Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-29T12:25:22.295Z Has data issue: false hasContentIssue false

Axiomatization of polynomial substitution algebras

Published online by Cambridge University Press:  12 March 2014

Norman Feldman*
Affiliation:
Sonoma State University, Rohnert Park, California 94928

Extract

The axiomatization of algebras of functions or partial functions under various operations has been studied by several authors. Menger [2] deals with the problem of axiomatizing the algebraic properties of 1-ary functions from the reals to the reals. He considers algebras with one of three binary operations corresponding to addition, multiplication or composition. This study is furthered by Schweizer and Sklar in [3]–[6]. In addition to the operations mentioned above they also introduce a partial ordering which corresponds to restriction of functions. In the second of these papers they give a set of axioms such that any system satisfying these axioms is order isomorphic to a concrete system of partial functions under composition and ordered by restriction. In [7] Schweizer and Sklar extend their work to the algebra of multiplace vector-valued functions. In [8] Whitlock studies abstract multiplaced function systems given by super-associative laws and shows that these systems are isomorphically embeddable in a concrete system of multiplaced functions where the operation on the functions is substitution of an m-ary function in an n-ary function.

In this paper we consider the set of functions from Uα, the set of α-sequences, to U where a is an infinite ordinal. As opposed to the composition operations studied in the above works, we consider the composition operations *κ, for κ < α, in a narrow sense—the substitution of one function in the κth place of another. The algebras studied have the form ‹A, *κ, Vκκ<α where Vκ are the projection (selector) functions on the κth place. In particular, the polynomials over an algebra form such an algebra called a polynomial substitution algebra. In §6 we show that a first-order axiom system and a condition of local finiteness, given by Pinter in a talk at Berkeley in 1972 to characterize term substitution abgebras, also characterize these polynomial substitution algebras.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

[1]Henkin, L. and Tarski, A., Cylindrical algebras, Lattice theory, Proceedings of Symposia in Pure Mathematics, Vol. 2 (Dilworth, R.P., Editor), American Mathematical Society, Providence, Rhode Island, 1961, pp. 83113.Google Scholar
[2]Menger, K., Axiomatic theory of functions and fluents, The Axiomatic Method (Henkin, L.et al., Editors), North-Holland, Amsterdam, 1959, pp. 454473.CrossRefGoogle Scholar
[3]Schweizer, B. and Sklar, A., The algebra of functions, Mathematische Annalen, vol. 139 (1960), pp. 366382.CrossRefGoogle Scholar
[4]Schweizer, B. and Sklar, A., The algebra of functions. II, Mathematische Annalen, vol. 143 (1961), pp. 440447.CrossRefGoogle Scholar
[5]Schweizer, B. and Sklar, A., The algebra of functions. III, Mathematische Annalen, vol. 161 (1965), pp. 171196CrossRefGoogle Scholar
[6]Schweizer, B. and Sklar, A., Function systems, Mathematische Annalen, vol. 172 (1967), pp. 116.CrossRefGoogle Scholar
[7]Schweizer, B. and Sklar, A., The algebra of multiplace vector-valued functions, Bulletin of the American Mathematical Society, vol. 73 (1967), pp. 510–155.CrossRefGoogle Scholar
[8]Whitlock, I.H., A composition algebra for multiplace functions, Mathematische Annalen, vol. 157 (1964), pp. 167178.CrossRefGoogle Scholar