No CrossRef data available.
Article contents
Arithmetic definability by formulas with two quantifiers
Published online by Cambridge University Press: 12 March 2014
Abstract
We give necessary conditions for a set to be definable by a formula with a universal quantifier and an existential quantifier over algebraic integer rings or algebraic number fields. From these necessary conditions we obtain some undefinability results. For example, N is not definable by such a formula over Z. This extends a previous result of R. M. Robinson.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 1992
References
REFERENCES
[1]Denef, J. and Lipshitz, L., Diophantine sets over some rings of algebraic integers, Journal of the London Mathematical Society, ser. 2, vol. 18 (1978), pp. 385–391.CrossRefGoogle Scholar
[2]Robinson, R. M., Arithmetical definitions in the ring of integers, Proceedings of the American Mathematical Society, vol. 2 (1951), pp. 279–284.CrossRefGoogle Scholar
[3]Schinzel, A., Selected topics on polynomials, University of Michigan Press, Ann Arbor, Michigan, 1982.CrossRefGoogle Scholar
[4]Tung, S. P., On weak number theories, Japanese Journal of Mathematics, New Series, vol. 11 (1985), pp. 203–232.Google Scholar
[5]Tung, S. P., Definability in number fields, this Journal, vol. 52 (1987), pp. 152–155.Google Scholar
[6]Tung, S. P., Definability on formulas with a single quantifier, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 34 (1988), pp. 105–108.CrossRefGoogle Scholar