No CrossRef data available.
Article contents
An intuitionistic version of Zermelo's proof that every choice set can be well-ordered
Published online by Cambridge University Press: 12 March 2014
Abstract
We give a proof, valid in any elementary topos, of the theorem of Zermelo that any set possessing a choice function for its set of inhabited subsets can be well-ordered. Our proof is considerably simpler than existing proofs in the literature and moreover can be seen as a direct generalization of Zermelo's own 1908 proof of his theorem.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 2001
References
REFERENCES
[1]Aczel, P., Every choice set can be well-ordered: An elementary proof in intuitionistic set theory, Atti del Congresso Temi e prospettive della logica e della filosofia della scienze contemporanee (Cesena 7-10 gennaio, 1987), CLUEB, Bologna, 1988, pp. 13–22.Google Scholar
[2]Bell, J. L., Toposes and local set theories: An introduction, Oxford Logic Guides, vol. 14, Oxford University Press, Oxford, 1988.Google Scholar
[3]Blass, A., Well-ordering and induction in intuitionistic logic and topoi, Mathematical logic and theoretical computer science (College Park, Md., 1984–1985), Dekker, New York, 1987, pp. 29–48.Google Scholar
[4]Freyd, P., Choice and well-ordering, Annals of Pure and Applied Logic, vol. 35 (1987), pp. 149–166.CrossRefGoogle Scholar
[5]van Heltenoort, J., From Frege to Gödel: A sourcebook in mathematical logic, 1897–1931, Harvard University Press, Cambridge, 1967.Google Scholar
[6]Smullyan, R. M. and Fitting, M., Set theory and the continuum problem, Oxford Logic Guides, vol. 34, Oxford University Press, Oxford, 1996.Google Scholar
[8]Zermelo, E., Beweis, daß jede Menge wohlgeordnet werden kann, Mathematische Annalen, vol. 59 (1904), pp. 514–516, English translation in [5], pp. 139–141.CrossRefGoogle Scholar
[9]Zermelo, E., Neuer Beweis für die Möglichkeit einer Wohlordnung, Mathematische Annalen, vol. 65 (1908), pp. 107–128, English translation in [5], pp. 183–198.CrossRefGoogle Scholar