We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Akira Nakamura. On an axiomatic system of the infinitely many-valued threshold logics. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 8 (1962), pp. 71–76. - Akira Nakamura. On the infinitely many-valued threshold logics and von Wright's system M″. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 8 (1962), pp. 147–164. - Akira Nakamura. A note on truth-value functions in the infinitely many-valued logics. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 8 (1962), vol. 9 (1963), pp. 141–144. - Akira Nakamura. On a simple axiomatic system of the infinitely many-valued logic based on ∧, →. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 8 (1962), pp. 251–263. - Akira Nakamura. On an axiomatic system of the infinitely many-valued threshold predicate calculi. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 8 (1962), pp. 321–239. - Akira Nakamura. Truth-value stipulations for the von Wright system M′ and the Heyting system. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 8 (1962), vol. 10 (1964), pp. 173–183.
Review products
Akira Nakamura. On an axiomatic system of the infinitely many-valued threshold logics. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 8 (1962), pp. 71–76.
Akira Nakamura. On the infinitely many-valued threshold logics and von Wright's system M″. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 8 (1962), pp. 147–164.
Akira Nakamura. A note on truth-value functions in the infinitely many-valued logics. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 8 (1962), vol. 9 (1963), pp. 141–144.
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)