Published online by Cambridge University Press: 01 August 2018
This article contributes to the general program of extending techniques and ideas of effective algebra to computable metric space theory. It is well-known that relative computable categoricity (to be defined) of a computable algebraic structure is equivalent to having a c.e. Scott family with finitely many parameters (e.g., [1]). The first main result of the article extends this characterisation to computable Polish metric spaces. The second main result illustrates that just a slight change of the definitions will give us a new notion of categoricity unseen in the countable case (to be stated formally). The second result also shows that the characterisation of computably categorical closed subspaces of ${\Cal R}^n $ contained in [17] cannot be improved. The third main result extends the characterisation to not necessarily separable structures of cardinality κ using κ-computability.