Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T07:49:02.083Z Has data issue: false hasContentIssue false

TRUTHS, INDUCTIVE DEFINITIONS, AND KRIPKE-PLATEK SYSTEMS OVER SET THEORY

Published online by Cambridge University Press:  23 October 2018

KENTARO FUJIMOTO*
Affiliation:
SCHOOL OF MATHEMATICS AND DEPARTMENT OF PHILOSOPHY UNIVERSITY OF BRISTOL BRISTOL BS8 1TW, UKE-mail:[email protected]

Abstract

In this article we study the systems KF and VF of truth over set theory as well as related systems and compare them with the corresponding systems over arithmetic.

Type
Articles
Copyright
Copyright © The Association for Symbolic Logic 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aczel, P., Non-Well-Founded Sets, CSLI Publication, Stanford, CA, 1988.Google Scholar
Barwise, J., Admissible Sets and Structures, Springer, Berlin, 1975.CrossRefGoogle Scholar
Barwise, J., Gandy, R., and Moschovakis, Y., The next admissible set, this JOURNAL, vol. 36 (1971), pp. 108120.Google Scholar
Buchholz, W., Feferman, S., Pohlers, W., and Sieg, W., Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretic Studies, Lecture Notes in Mathematics, vol. 897, Springer, Berlin, 1981.CrossRefGoogle Scholar
Burgess, J., Friedman and the axiomatization of Kripke’s theory of truth, Foundational Adventures: Essays in Honor of Harvey M. Friedman (Tennant, N., editor), College Publications, London, 2014, pp. 125148.Google Scholar
Cantini, A., Notes on formal theories of truth. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 35 (1989), pp. 97130.CrossRefGoogle Scholar
Cantini, A., A theory of formal truth arithmetically equivalent to ID1, this JOURNAL, vol. 55 (1990), pp. 244259.Google Scholar
Cantini, A., Logical Frameworks for Truth and Abstraction, Elsevier, Amsterdam, 1996.Google Scholar
Feferman, S., Reflecting on incompleteness, this JOURNAL, vol. 56 (1991), pp. 149.Google Scholar
Field, H., Deflating the conservativeness argument. The Journal of Philosophy, vol. 96 (1999), pp. 533540.CrossRefGoogle Scholar
Fujimoto, K., Relative truth definability of axiomatic theories of truth. The Bulletin of Symbolic Logic, vol. 16 (2010), pp. 305344.CrossRefGoogle Scholar
Fujimoto, K., Classes and truths in set theory. Annals of Pure and Applied Logic, vol. 163 (2012), pp. 14841523.CrossRefGoogle Scholar
Fujimoto, K., Notes on some second-order systems of iterated inductive definitions and ${\rm{\Pi }}_1^1$-comprehensions and relevant sybsystems of set theory. Annals of Pure and Applied Logic, vol. 166 (2015), pp. 409463.CrossRefGoogle Scholar
Fujimoto, K., Deflationism beyond arithmetic. Synthese, 2017, preprint, doi:10.1007/s11229-017-1495-8.CrossRefGoogle Scholar
Halbach, V., Truth and reduction. Erkenntnis, vol. 53 (2000), pp. 97126.CrossRefGoogle Scholar
Jäger, G., Zur Beweistheorie der Kripke-Platek-Mengenlehre über den natürlichen Zahlen. Archiv für Mathematische Logik und Grundlagenforschung, vol. 22 (1982), pp. 121139.CrossRefGoogle Scholar
Jäger, G. and Krähenbühl, J., .${\rm{\Sigma }}_1^1$choice in a theory of sets and classes, Ways of Proof Theory (Schindler, R., editor), Ontos Verlag, Frankfurt, 2010, pp. 283314.Google Scholar
Kahle, R., Truth in applicative theories. Studia Logica, vol. 68 (2001), pp. 103128.CrossRefGoogle Scholar
Moschovakis, Y., Elementary Induction on Abstract Structures, Studies in Logic and the Foundation of Mathematics, no. 77, North Holland, Amsterdam, 1974.Google Scholar
Pohlers, W., Subsystems of set theory and second order number theory, Handbook of Proof Theory (Buss, S., editor), Elsevier, Amsterdam, 1998, pp. 209336.CrossRefGoogle Scholar
Pohlers, W., Proof Theory, Springer, Berlin, 2009.Google Scholar
Sato, K., Full and hat inductive definitions are equivalent in NBG. Archive for Mathematical Logic, vol. 54 (2015), pp. 75112.CrossRefGoogle Scholar
Simpson, S. G., Subsystems of Second Order Arithmetic, Cambridge University Press, Cambridge, 2009.CrossRefGoogle Scholar
Tapp, C., Eine direkte Einbettung von ${\rm{KP}}\omega$ in ${\rm{I}}{{\rm{D}}_1}$. Diploma thesis, Westfälische Wilhelms-Universität Münster, 1999.Google Scholar