Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-07T23:31:07.092Z Has data issue: false hasContentIssue false

Trichotomies for ideals of compact sets

Published online by Cambridge University Press:  12 March 2014

É. Matheron
Affiliation:
Université Bordeaux 1, 351 Cours de la Libération, 33405 Talence Cedex, France. E-mail: [email protected]
S. Solecki
Affiliation:
Department of Mathematics, University of Illinois, 1409 W. Green St., Urbana, IL 61801, USA. E-mail: [email protected]
M. Zelený
Affiliation:
Charles University, Faculty of Mathematics and Physics, Department of Mathematical Analysis, Sokolovská 83, Prague 8, 186 75, Czech Republic. E-mail: [email protected]

Abstract

We prove several trichotomy results for ideals of compact sets. Typically, we show that a “sufficiently rich” universally Baire ideal is either Π30-hard. or Σ30-hard. or else a σ-ideal.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[BD]Balcerzak, M. and Darji, U. B.. Some examples of true Fσδ sets, Colloquium Mathematicum, vol. 86 (2000), pp. 203207.CrossRefGoogle Scholar
[C]Christensen, J. P. R.. Topology and Borel structure. North-Holland Mathematics Studies, vol. 10. (Notasde Matemática 51). North-Holland/Elsevier, Amsterdam, 1974.Google Scholar
[DSR]Debs, G. and Saint-Raymond, J.. Ensembles boréliens d'unicité et d'unicité au sens large, Annates de l'Institut Fourier, vol. 37 (1987), no. 3. pp. 217239. Université de Grenoble.CrossRefGoogle Scholar
[K2]Kechris, A. S., Hereditary properties of the class of closed sets of uniqueness for trigonometric series, Israel Journal of Mathematics, vol. 73 (1991), pp. 189198.CrossRefGoogle Scholar
[K1]Kechris, A. S., Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag. 1995.CrossRefGoogle Scholar
[KL]Kechris, A. S. and Louveau, A.. Descriptive set theory and the structure of sets of uniqueness, London Mathematical Society Lecture Note Series, vol. 128. Cambridge University Press, Cambridge, 1987.CrossRefGoogle Scholar
[KLW]Kechris, A. S., Louveau, A., and Woodin, W. H.. The structure of σ-ideals of compact sets, Transactions of the American Mathematical Society, vol. 301 (1987). pp. 263288.Google Scholar
[M]Matheron, É., How to recognize a true set. Fundamenta Mathematical vol. 158 (1998), pp. 181194.CrossRefGoogle Scholar
[MZ]Matheron, É. and Zelený, M.. Rudin-like sets and hereditary families of compact sets, Fundamenta Mathematical vol, 185 (2005), pp. 97116.CrossRefGoogle Scholar
[ST]Solecki, S. and Todorcevic, S.. Cofinal types of topological directed orders, Annates de l'Institut Fourier, vol. 54 (2004). pp. 18771911. Université de Grenoble.Google Scholar
[T]Todorcevic, S.. Topics in topology. Lecture Notes in Mathematics, vol. 1652. Springer-Verlag, Berlin, 1997.CrossRefGoogle Scholar
[E]van Engelen, F., On borel ideals, Annals of Pure and Applied Logic, vol. 70 (1994). pp. 177203.CrossRefGoogle Scholar