Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T21:39:43.736Z Has data issue: false hasContentIssue false

R.J. THOMPSON’S GROUPS F AND T ARE BI-INTERPRETABLE WITH THE RING OF THE INTEGERS

Published online by Cambridge University Press:  18 August 2014

CLÉMENT LASSERRE*
Affiliation:
ÉQUIPE DE LOGIQUE MATHÉMATIQUE UNIVERSITÉ PARIS DIDEROT PARIS 7 UFR DE MATHÉMATIQUES CASE 7012 SITE CHEVALERET 75205 PARIS CEDEX 13, FRANCE

Abstract

We show that R.J. Thompson’s groups F and T are bi-interpretable with the ring of the integers. From a result by A. Khélif, these groups are quasi-finitely axiomatizable and prime. So, the group T provides an example of a simple group which is quasi-finitely axiomatizable and prime. This answers questions posed by T. Altınel and A. Muranov in [2], and by A. Nies in [12].

Type
Articles
Copyright
Copyright © The Association for Symbolic Logic 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlbrandt, G. and Ziegler, M., Quasi-finitely axiomatizable totally categorical theories. Annals of Pure and Applied Logic, vol. 30 (1986), pp. 6382.Google Scholar
Altınel, T. and Muranov, A., Interprétation de l’arithmétique dans certains groupes de permutations affines par morceaux d’un intervalle. Journal of the Institute of Mathematics of Jussieu, vol. 8 (2009), pp. 623652.CrossRefGoogle Scholar
Bardakov, V. and Tolstykh, V., Interpreting the arithmetic in Thompson’s group F. Journal of Pure and Applied Algebra, vol. 211 (2007), pp. 633637.CrossRefGoogle Scholar
Cannon, J.W., Floyd, W.J., and Parry, W.R., Introductory notes on Richard Thompson’s groups, L’Enseignement Mathématique (2), vol. 42 (1996), pp. 215256.Google Scholar
Davis, M., Hilbert’s tenth problem is unsolvable. American Mathematical Monthly, vol. 80 (1973), pp. 233269.Google Scholar
Hodges, W., Model theory, Encyclopedia of mathematics and its applications, Cambridge University Press, Cambridge, 1993.CrossRefGoogle Scholar
Khélif, A., Bi-interprétabilité et structures QFA : étude de groupes résolubles et des anneaux commutatifs, Comptes Rendus Mathématique de l’Académie des Sciences de Paris, vol. 345 (2007), pp. 5961.Google Scholar
Lasserre, C., Sur les groupes de type fini : primalité, axiomatisabilité quasi finie et bi-interprétabilité avec l’arithmétique, Ph.D. thesis, Université Paris 7, September 2011.Google Scholar
Matijasevich, Y.V., Enumerable sets are diophantine, Soviet Mathematics Doklady, vol. 11 (1970), pp. 354358.Google Scholar
Morozov, A. and Nies, A., Finitely generated groups and first order logic. Journal of London Mathematical Society, vol. 71 (2005), pp. 545562.CrossRefGoogle Scholar
Nies, A., Separating classes of groups by first-order sentences. International Journal of Algebra and Computation, vol. 13 (2003), pp. 287302.CrossRefGoogle Scholar
Nies, A., Comparing quasi-finitely axiomatizable groups and prime models. Journal of Group Theory, vol. 10 (2007), pp. 347361.Google Scholar
Nies, A., Describing groups. Bulletin of Symbolic Logic, vol. 13 (2007), pp. 305339.Google Scholar
Noskov, G.A., On the elementary theory of a finitely generated almost solvable group, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, vol. 47 (1983), pp. 498517.Google Scholar
Odifreddi, P., Classical recursion theory, vol. 1, North-Holland, Amsterdam, 1999.Google Scholar
Ould Houcine, A., Homogeneity and prime models in torsion-free hyperbolic groups. Confluentes Mathematici, vol. 3 (2011), pp. 121155.Google Scholar
Rhemtulla, A.H., Commutators of certain finitely generated soluble groups. Canadian Journal of Mathematics, vol. 21 (1969), pp. 11601164.Google Scholar
Thompson, R.J., Embeddings into finitely generated simple groups which preserve the word problem, Word problems II (conf. on decision problems in algebra, Oxford, 1976), Studies in Logic and the Foundations of Mathematics, vol. 95, North-Holland, Amsterdam, New York, 1980, pp. 401–441.CrossRefGoogle Scholar