Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-02T22:41:43.185Z Has data issue: false hasContentIssue false

The relation of recursive isomorphism for countable structures

Published online by Cambridge University Press:  12 March 2014

Riccardo Camerlo*
Affiliation:
Institut Für Formale Logik, Universität wien, Währinger Straβe 25. 1090 Wien, Austria
*
Dipartimento di matematica, Università degli studi di Torino, Via Carlo Alberto 10, 10123 Torino, Italy, E-mail: [email protected]

Abstract

It is shown that the relations of recursive isomorphism on countable trees, groups, Boolean algebras, fields and total orderings are universal countable Borel equivalence relations, thus providing a countable analogue of the Borel completeness of the isomorphism relations on these same classes.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Andretta, A., Camerlo, R., and Hjorth, G., Conjugacy equivalence relation on subgroups, Fundamenta Mathematicae, vol. 167 (2001), pp. 189212.CrossRefGoogle Scholar
[2]Becker, H. and Kechris, A. S., The descriptive set theory of Polish group actions, Cambridge University Press, 1996.CrossRefGoogle Scholar
[3]Camerlo, R., Applications of descriptive set theory to classification problems for classes of structures and equivalence relations, Ph. d. dissertation, Università degli studi di Genova, 1999.Google Scholar
[4]Camerlo, R. and Gao, S., The completeness of the isomorphism relation for countable Boolean algebras, Transactions of the American Mathematical Society, vol. 353 (2001), pp. 491518.CrossRefGoogle Scholar
[5]Dougherty, R., Jackson, S., and Kechris, A. S., The structure of hyperfinite Borel equivalence relations, Transactions of the American Mathematical Society, vol. 341 (1994), pp. 193225.CrossRefGoogle Scholar
[6]Feldman, J. and Moore, C. C., Ergodic equivalence relations and von Neumann algebras, I, Transactions of the American Mathematical Society, vol. 234 (1977), pp. 289324.CrossRefGoogle Scholar
[7]Friedman, H. and Stanley, L., A Borel reducibility theory for classes of countable structures, this Journal, vol. 54 (1989), pp. 894914.Google Scholar
[8]Goncharov, S. S., Countable Boolean algebras and decidability, Consultants Bureau, 1997.Google Scholar
[9]Hodges, W., Model theory, Cambridge University Press, 1995.Google Scholar
[10]Kechris, A. S., Lectures on definable group actions and equivalence relations, manuscript, 1994.Google Scholar
[11]Ketonen, J., The structure of countable Boolean algebras, Annals of Mathematics, vol. 108 (1978), pp. 4189.CrossRefGoogle Scholar
[12]Mekler, A. H., Stability of nilpotent groups of class 2 and prime exponent, this Journal, vol. 46 (1981), pp. 781788.Google Scholar
[13]Pierce, R. S., Countable Boolean algebras, Handbook of Boolean algebras (Monk, J. D. and Bonnet, R., editors), North-Holland, 1989, pp. 775876.Google Scholar
[14]Roman, S., Field theory, Springer-Verlag, 1995.CrossRefGoogle Scholar