Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T22:38:47.373Z Has data issue: false hasContentIssue false

À propos d'équations génériques

Published online by Cambridge University Press:  12 March 2014

Frank O. Wagner*
Affiliation:
Abteiltung für Logik, Mathematisches Institut, Albert-Ludwigs-Universität, W-7800 Freiburg, Germany, E-mail: [email protected]

Abstract

We prove that a stable solvable group G which satisfies xn = 1 generically is of finite exponent dividing some power of n. Furthermore, G is nilpotent-by-finile.

A second result is that in a stable group of finite exponent, involutions either have big centralisers, or invert a subgroup of finite index (which hence has to be abelian).

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[AFG]Aguzarov, I., Farey, R. E., and Goode, J. B., An infinite superstable group has infinitely many conjugacy classes, this Journal, vol. 56 (1991), pp. 618623.Google Scholar
[B]Bryant, R. M., Groups with the minimal condition on centralizers, Journal of Algebra, vol. 60(1979), pp. 371383.CrossRefGoogle Scholar
[Ba]Baudisch, A., On stable solvable groups of bounded exponent, Proceedings of the sixth Easter conference on model theory, Humboldt-Universität, Berlin, 1988, pp. 727.Google Scholar
[BH]Bryant, R. M. and Hartley, B., Periodic locally soluble groups with the minimal condition on centralizers, Journal of Algebra, vol. 61 (1979), pp. 328334.CrossRefGoogle Scholar
[BS]Baldwin, J. and Saxl, J., Logical stability in group theory, Journal of the Australian Mathematical Society, Series A, vol. 21 (1976), pp. 267276.CrossRefGoogle Scholar
[H]Hartley, B., Centralisers in locally finite groups, Group theory (proceedings Brixen/Bressanone 1986; Kegel, O.et al., editors), Lecture Notes in Mathematics, vol. 1281, Springer-Verlag, Berlin, 1987, pp. 3651.Google Scholar
[Ha]Hall, P., Some sufficient conditions for a group to be nilpotent, Illinois Journal of Mathematics, vol. 2(1958), pp. 787801.CrossRefGoogle Scholar
[Hr]Hrushovski, E., Contributions to stable model theory, Ph.D. thesis, University of California, Berkeley, California, 1986.Google Scholar
[K]Kegel, O., Four lectures on Sylow theory in locally finite groups, Group theory (proceedings, Singapore, 1987; Nah, K. N. and Leong, Y. K., editors), de Gruyter, Berlin, 1989, pp. 327.Google Scholar
[P1]Poizat, B., Groupes stables, Nur al-Mantiq wal-Ma'rifah, Villeurbanne, 1987.Google Scholar
[P2]Poizat, B., Équations génériques, Proceedings of the eighth Easter conference on model theory (Dahn, B. and Wolter, H., editors), Humboldt-Universität, Berlin, 1990, pp. 131138.Google Scholar
[PW]Poizat, B. and Wagner, F. O., Sous-groupes périodiques d'un groupe stable, this Journal (submitted).Google Scholar
[W1]Wagner, F. O., Stable groups and generic types, D. Phil, thesis, Oxford Uhiversity, Oxford, 1990.Google Scholar
[W2]Wagner, F. O., Small stable groups and generics, this Journal, vol. 56 (1991), pp. 10261037.Google Scholar