Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T19:45:43.958Z Has data issue: false hasContentIssue false

The ordered field of real numbers and logics with Malitz quantifiers1

Published online by Cambridge University Press:  12 March 2014

Andreas Rapp*
Affiliation:
Mathematisches Institut, Albert-Ludwigs Universität, D-7800 Freiburg, West Germany

Abstract

Let ℜ = (R, + R,…) be the ordered field of real numbers. It will be shown that the -theory of ℜ is decidable, where denotes the Malitz quantifier of order n in the ℵ1-interpretation.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

This paper contains a chapter of my doctoral dissertation completed at the University of Freiburg. I would like to express my gratitude to my supervisor, Professor Dr. H.-D. Ebbinghaus, for his support and encouragement.

References

REFERENCES

[1]Baudisch, A., Uncountable n-cubes in models of ℵ0-categorical theories, Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, vol. 27 (1979), pp. 19.Google Scholar
[2]Brieskorn, E. and Knörrer, H., Ebene algebraische Kurven, Birkhäuser, Basel, 1981.Google Scholar
[3]Cowles, J., The relative expressive power of some logics extending first-order logic, this Journal, vol. 44 (1979), pp. 129146.Google Scholar
[4]Cowles, J., The theory of Archimedean real closed fields in logics with Ramsey quantifiers, Fundamenta Mathematicae, vol. 102 (1979), pp. 6576.CrossRefGoogle Scholar
[5]vaglia, S. Gara, Relative strength of Malitz quantifiers, Notre Dame Journal of Formal Logic, vol. 19 (1978), pp. 495503.Google Scholar
[6]Goltz, H. J., Untersuchungen zur Elimination verallgemeinerte Quantoren in Körpertheorien, Wissenschaftliche Zeitschrift der Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Reihe, vol. 29 (1980), pp. 391397.Google Scholar
[7]Magidor, M. and Malitz, J., Compact extensions of L(Q). Part Ia, Annals of Mathematical Logic, vol. 11 (1977), pp. 217261.CrossRefGoogle Scholar
[8]Tarski, A. and McKinsey, J.C.C., A decision method for elementary algebra and geometry, 2nd ed., University of California Press, Berkeley and Los Angeles, California, 1948.Google Scholar
[9]Vinner, S., Model-completeness in a first-order language with a generalized quantifier, Pacific Journal of Mathematics, vol. 56 (1975), pp. 265273.CrossRefGoogle Scholar