Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T01:39:01.639Z Has data issue: false hasContentIssue false

On the role of the Baire Category Theorem and Dependent Choice in the foundations of logic

Published online by Cambridge University Press:  12 March 2014

Robert Goldblatt*
Affiliation:
Mathematics Department, Victoria University, Wellington, New Zealand

Abstract

The Principle of Dependent Choice is shown to be equivalent to: the Baire Category Theorem for Čech-complete spaces (or for complete metric spaces); the existence theorem for generic sets of forcing conditions; and a proof-theoretic principle that abstracts the “Henkin method” of proving deductive completeness of logical systems. The Rasiowa-Sikorski Lemma is shown to be equivalent to the conjunction of the Ultrafilter Theorem and the Baire Category Theorem for compact Hausdorff spaces.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baire, R. [1899], Sur les fonctions de variables réellés, Annali di Matematica Pura ed Applicata, ser. 3, vol. 3, pp. 1122.CrossRefGoogle Scholar
Bell, J. L. [1977], Boolean-valued models and independence proofs in set theory, Oxford University Press, Oxford.Google Scholar
Bowen, K. A. [1974], Forcing in a general setting, Fundamenta Mathematicae, vol. 81, pp. 315329.CrossRefGoogle Scholar
Čech, E. [1937], On bicompact spaces, Annals of Mathematics, ser. 2, vol. 38, pp. 823844.CrossRefGoogle Scholar
Engelking, R. [1977], General topology, PWN—Polish Scientific Publishers, Warsaw.Google Scholar
Feferman, S. [1952], Review of Rasiowa and Sikorski [1950], this Journal, vol. 17, p. 72.Google Scholar
Feferman, S. [1965], Some applications of the notions of forcing and generic sets, Fundamenta Mathematicae, vol. 56, pp. 325345.CrossRefGoogle Scholar
Felgner, U. [1971], Models of ZF-set theory, Lecture Notes in Mathematics, vol. 223, Springer-Verlag, Berlin.CrossRefGoogle Scholar
Goldblatt, R. [1983], An abstract setting for Henkin proofs, Topoi, vol. 3 (1984), pp. 3741.CrossRefGoogle Scholar
Grzegorczyk, A., Mostowski, A. and Ryll-Nardzewski, C. [1961], Definability of sets of models of axiomatic theories, Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques et Physiques, vol. 9, pp. 163167.Google Scholar
Halpern, J. D. and Lévy, A. [1971], The Boolean prime ideal theorem does not imply the axiom of choice, Axiomatic set theory, Proceedings of Symposia in Pure Mathematics, vol. 13, part 1, American Mathematical Society, Providence, Rhode Island, pp. 83134.CrossRefGoogle Scholar
Hausdorf, F. [1914], Grundzüge der Mengenlehre, Veit, Leipzig.Google Scholar
Henkin, L. [1949], The completeness of the first-order functional calculus, this Journal, vol. 14, pp. 159166.Google Scholar
Moore, R. L. [1924], An extension of the theorem that no countable point set is perfect, Proceedings of the National Academy of Sciences of the United States of America, vol. 10, pp. 168170.CrossRefGoogle ScholarPubMed
Mostowski, A. [1975], An exposition of forcing, Algebra and logic (Crossley, J. N., editor), Lecture Notes in Mathematics, vol. 450, Springer-Verlag, Berlin, pp. 220282.CrossRefGoogle Scholar
Rasiowa, H. and Sikorski, R. [1950], A proof of the completeness theorem of Gödel, Fundamenta Mathematicae, vol. 37, pp. 193200.CrossRefGoogle Scholar
Takeuti, G. and Zaring, W. M. [1973], Axiomatic set theory, Springer-Verlag, Berlin.CrossRefGoogle Scholar