No CrossRef data available.
Article contents
ON THE AUTOMORPHISM GROUP OF THE UNIVERSAL HOMOGENEOUS MEET-TREE
Part of:
Model theory
Connections with other structures, applications
Permutation groups
Structure and classification of infinite or finite groups
Set theory
Ordered sets
Published online by Cambridge University Press: 01 February 2021
Abstract
We show that the countable universal homogeneous meet-tree has a generic automorphism, but it does not have a generic pair of automorphisms.
MSC classification
Primary:
03C15: Denumerable structures
- Type
- Article
- Information
- Copyright
- © Association for Symbolic Logic 2021
References
Bodirsky, M., Bradley-Williams, D., Pinsker, M., and Pongrácz, A.,
The universal homogeneous binary tree
. Journal of Logic and Computation, vol. 28 (2018), no. 1, pp. 133–163.10.1093/logcom/exx043CrossRefGoogle Scholar
Droste, M., Holland, W. C., and Macpherson, H. D.,
Automorphism groups of infinite semilinear orders (II)
. Proceedings of the London Mathematical Society, vol. s3-58 (1989), no. 3, pp. 479–494.10.1112/plms/s3-58.3.479CrossRefGoogle Scholar
Duchesne, B.,
Topological properties of Ważewski dendrite groups
. Journal de l’École polytechnique—Mathématiques, vol. 7 (2020), pp. 431–477.10.5802/jep.121CrossRefGoogle Scholar
Ivanov, A. A., Generic expansions of
$\omega$
-categorical structures and semantics of generalized quantifiers. this Journal, vol. 64 (1999), no. 2, pp. 775–789.Google Scholar
Kaplan, I. and Shelah, S.,
A dependent theory with few indiscernibles
. Israel Journal of Mathematics, vol. 202 (2014), no. 1, pp. 59–103.10.1007/s11856-014-1067-2CrossRefGoogle Scholar
Kaplan, I. and Shelah, S.,
Examples in dependent theories
, this Journal, vol. 79 (2014), no. 2, pp.585–619.Google Scholar
Kechris, A. S., Pestov, V. G., and Todorcevic, S.,
Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups. Geometric & Functional Analysis, vol. 15 (2005), no. 1, pp. 106–189.10.1007/s00039-005-0503-1CrossRefGoogle Scholar
Kechris, A. S. and Rosendal, C.,
Turbulence, amalgamation, and generic automorphisms of homogeneous structures
. Proceedings of the London Mathematical Society, vol. 94 (2007), no. 2, pp. 302–350.10.1112/plms/pdl007CrossRefGoogle Scholar
Kuske, D. and Truss, J. K.,
Generic automorphisms of the universal partial order
. Proceedings of the American Mathematical Society, vol. 129 (2001), no. 7, pp. 1939–1948.CrossRefGoogle Scholar
Kwiatkowska, A.,
The group of homeomorphisms of the cantor set has ample generics
. Bulletin of the London Mathematical Society, vol. 44 (2012), no. 6, pp. 1132–1146.10.1112/blms/bds039CrossRefGoogle Scholar
Kwiatkowska, A. and Malicki, M.,
Ordered structures and large conjugacy classes
. Journal of Algebra, vol. 557 (2020), pp. 67–96.10.1016/j.jalgebra.2020.03.021CrossRefGoogle Scholar
Macpherson, D.,
A survey of homogeneous structures
. Discrete Mathematics, vol. 311 (2011), no. 15, pp. 1599–1634.10.1016/j.disc.2011.01.024CrossRefGoogle Scholar
Simon, P.,
A Guide to NIP Theories
, Lecture Notes in Logic, vol. 44, Association for Symbolic Logic and Cambridge Scientific, Chicago, IL and Cambridge, 2015.Google Scholar
Simon, P., NIP omega-categorical structures: The rank 1 case, arXiv preprint, 2018, arXiv:1807.07102.Google Scholar
Siniora, D. N.,
Automorphism groups of homogeneous structures
, Ph.D. thesis, University of Leeds, 2017.Google Scholar
Truss, J. K.,
Generic automorphisms of homogeneous structures
. Proceedings of the American Mathematical Society, vol. s3-65 (1992), no. 1, pp. 121–141.10.1112/plms/s3-65.1.121CrossRefGoogle Scholar
Truss, J. K.,
On notions of genericity and mutual genericity
, this Journal, vol. 72 (2007), no. 3, pp. 755–766.Google Scholar