Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T00:22:31.302Z Has data issue: false hasContentIssue false

On a result of Szemerédi

Published online by Cambridge University Press:  12 March 2014

Albin L. Jones*
Affiliation:
2153 Oakdale Rd. Pasadena, MD 21122, USA, E-mail: [email protected], URL: http://www.mojumi.net/~alj

Abstract

We provide a short proof that if κ is a regular cardinal with κ < c, then

for any ordinal α < min{, κ}. In particular,

for any ordinal α < . This generalizes an unpublished result of E. Szemerédi that Martin's axiom implies that

for any cardinal κ with κ < c.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bell, Murray G., On the combinatorialprinciple P(c), Fundamenta Mathematicae, vol. 114 (1981), no. 2, pp. 149157.CrossRefGoogle Scholar
[2]Erdős, P. and Hajnal, A., Unsolved and solved problems in set theory, Proceedings of the Tarski symposium, Proceedings of the Symposium for Pure Mathematics, Vol. XXV, American Mathematical Society, Providence, R.I., 1974, pp. 269287.CrossRefGoogle Scholar
[3]Erdős, P. and Rado, R., A partition calculus in set theory, Bulletin of the American Mathematical Society, vol. 62 (1956), pp. 427489.CrossRefGoogle Scholar
[4]Jech, T., Set theory, Academic Press, New York, 1978.Google Scholar
[5]Kunen, K., Set theory, North-Holland, Amsterdam, 1983, Reprint of the 1980 original.Google Scholar
[6]van Douwen, E. K., The integers and topology, Handbook of set theoretic topology (Kunen, K. and Vaughan, J. E., editors), North-Holland, Amsterdam, 1984, pp. 111167.CrossRefGoogle Scholar