Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T21:36:20.836Z Has data issue: false hasContentIssue false

Normal triangulations in o-minimal structures

Published online by Cambridge University Press:  12 March 2014

Elías Baro*
Affiliation:
Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain, E-mail: [email protected]

Abstract

Let be an o-minimal structure over a real closed field R. Given a simplicial complex K and some definable subsets S 1, …, Sl of its realization ∣K∣ in R we prove that there exist a subdivision K′ of K and a definable triangulation φ′: ∣K′∣ → ∣K∣ of ∣K∣ partitioning S 1, …, Sl with φ′ definably homotopic to id K. As an application of this result we obtain the semialgebraic Hauptvermutung.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Baro, E. and Otero, M., On o-minimal homotopy groups, The Quarterly Journal of Mathematics, (2009), p. 15, doi: 10.1093/qmath/hap011.Google Scholar
[2] Coste, M., Unicité des triangulations semi-algébriques: validité sur un corps réel clos quelconque, et effectivité forte, Comptes Rendus de l'Académie des Sciences. Série I. Mathématique, vol. 312 (1991), no. 5, pp. 395398.Google Scholar
[3] Delfs, H. and Knebusch, M., Locally semialgebraic spaces, Lecture Notes in Mathematics, vol. 1173, Springer-Verlag, Berlin, 1985.Google Scholar
[4] Johns, Joseph, An open mapping theorem for o-minimal structures, this Journal, vol. 66 (2001), pp. 18171820.Google Scholar
[5] Lipshitz, L. and Robinson, Z., Overconvergent real closed quantifier elimination, The Bulletin of the London Mathematical Society, vol. 38 (2006), no. 6, pp. 897906.Google Scholar
[6] Shiota, M. and Yokoi, M., Triangulations of subanalytic sets and locally subanalytic manifolds, Transactions of the American Mathematical Society, vol. 286 (1984), no. 2, pp. 727750.Google Scholar
[7] van den Dries, L., Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, vol. 248, Cambridge University Press, Cambridge, 1998.Google Scholar
[8] Woerheide, A., O-minimal homology, Ph.D. thesis, University of Illinois at Urbana-Champaign, 1996.Google Scholar