Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T17:59:33.276Z Has data issue: false hasContentIssue false

MORE ZFC INEQUALITIES BETWEEN CARDINAL INVARIANTS

Part of: Set theory

Published online by Cambridge University Press:  02 August 2021

VERA FISCHER
Affiliation:
KURT GÖDEL RESEARCH CENTER FOR MATHEMATICAL LOGIC UNIVERSITÄT WIENWIEN, AUSTRIAE-mail:[email protected]: http://www.logic.univie.ac.at/~vfischer/E-mail:[email protected]: http://www.logic.univie.ac.at/~soukupd73/
DÁNIEL T. SOUKUP
Affiliation:
KURT GÖDEL RESEARCH CENTER FOR MATHEMATICAL LOGIC UNIVERSITÄT WIENWIEN, AUSTRIAE-mail:[email protected]: http://www.logic.univie.ac.at/~vfischer/E-mail:[email protected]: http://www.logic.univie.ac.at/~soukupd73/

Abstract

Motivated by recent results and questions of Raghavan and Shelah, we present ZFC theorems on the bounding and various almost disjointness numbers, as well as on reaping and dominating families on uncountable, regular cardinals. We show that if $\kappa =\lambda ^+$ for some $\lambda \geq \omega $ and $\mathfrak {b}(\kappa )=\kappa ^+$ then $\mathfrak {a}_e(\kappa )=\mathfrak {a}_p(\kappa )=\kappa ^+$ . If, additionally, $2^{<\lambda }=\lambda $ then $\mathfrak {a}_g(\kappa )=\kappa ^+$ as well. Furthermore, we prove a variety of new bounds for $\mathfrak {d}(\kappa )$ in terms of $\mathfrak {r}(\kappa )$ , including $\mathfrak {d}(\kappa )\leq \mathfrak {r}_\sigma (\kappa )\leq \operatorname {\mathrm {cf}}([\mathfrak {r}(\kappa )]^\omega )$ , and $\mathfrak {d}(\kappa )\leq \mathfrak {r}(\kappa )$ whenever $\mathfrak {r}(\kappa )<\mathfrak {b}(\kappa )^{+\kappa }$ or $\operatorname {\mathrm {cf}}(\mathfrak {r}(\kappa ))\leq \kappa $ holds.

Type
Article
Copyright
© Association for Symbolic Logic 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abraham, U. and Magidor, M., Cardinal arithmetic, Handbook of Set Theory, Springer, Dordrecht, 2010, pp. 11491227.CrossRefGoogle Scholar
Ben-Neria, O. and Gitik, M., On the splitting number at regular cardinals. this Journal, vol. 80 (2015), no. 4, pp. 13481360.Google Scholar
Blass, A., Combinatorial cardinal characteristics of the continuum, Handbook of Set Theory, Springer, Dordrecht, 2010, pp. 395489.CrossRefGoogle Scholar
Blass, A., Hyttinen, T., and Zhang, Y., Mad families and their neighbors. Preprint, 2005.Google Scholar
Brendle, J., Around splitting and reaping. Commentationes Mathematicae Universitatis Carolinae, vol. 39 (1998), no. 2, pp. 269279.Google Scholar
Brooke-Taylor, A. D., Brendle, J., Friedman, S. D., and Montoya, D. C., Cichon’s diagram for uncountable cardinals. Israel Journal of Mathematics, 2017. Preprint available from arXiv:1611.08140v1 [math.LO]Google Scholar
Brooke-Taylor, A.D., Fischer, V., Friedman, S.D., and Montoya, D.C., Cardinal characteristics at $\kappa$ , in a small $u\left(\kappa \right)$ , model. Annals of Pure and Applied Logic, vol. 168 (2017), no. 1, pp. 3749.CrossRefGoogle Scholar
Cummings, J. and Shelah, S., Cardinal invariants above the continuum. Annals of Pure and Applied Logic, vol. 75 (1995), no. 3, pp. 251268.CrossRefGoogle Scholar
Dow, A. and Shelah, S., On the cofinality of the splitting number. Indagationes Mathematicae, vol. 29 (2018), no. 1, pp. 382395.CrossRefGoogle Scholar
Garti, S., Pity on lambda. Preprint, 2011, arXiv:1103.1947.Google Scholar
Hyttinen, T., Cardinal invariants and eventually different functions. Bulletin of the London Mathematical Society, vol. 38 (2006), no. 1, pp. 3442.CrossRefGoogle Scholar
Khomskii, Y., Laguzzi, G., Löwe, B., and Sharankou, I., Questions on generalised Baire spaces. Mathematical Logic Quarterly, vol. 62 (2015), no. 4–5, pp. 439456.CrossRefGoogle Scholar
Malliaris, M. and Shelah, S., General topology meets model theory, on p and t. Proceedings of the National Academy of Sciences, vol. 110 (2013), no. 33, pp. 1330013305.CrossRefGoogle Scholar
Raghavan, D. and Shelah, S., Two inequalities between cardinal invariants. Fundamenta Mathematicae, vol. 237 (2017), no. 2, pp. 187200.Google Scholar
, Two results on cardinal invariants at uncountable cardinals. Preprint, 2018, arXiv:1801.09369.Google Scholar
, On reaping number having countable cofinality. Preprint, 2014, arXiv:1401.4649.Google Scholar
Suzuki, T., About splitting numbers. Proceedings of the Japan Academy, Series A, Mathematical Sciences, vol. 74 (1998), no. 2, pp. 3335.CrossRefGoogle Scholar
Zapletal, J., Splitting number at uncountable cardinals. this Journal, vol. 62 (1997), no. 1, pp. 3542.Google Scholar