Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-04T09:15:34.290Z Has data issue: false hasContentIssue false

Menger's covering property and groupwise density

Published online by Cambridge University Press:  12 March 2014

Boaz Tsaban
Affiliation:
Department of Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel.E-mail:[email protected], URL:http://www.cs.biu.ac.il/~tsaban
Lyubomyr Zdomskyy
Affiliation:
Department of Mechanics and Mathematics, Ivan Franko Lviv National University, Universytetska 1, Lviv 79000, Ukraine.E-mail:[email protected]

Abstract

We establish a surprising connection between Menger's classical covering property and Blass-Laflamme's modern combinatorial notion of groupwise density. This connection implies a short proof of the groupwise density bound on the additivity number for Menger's property.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Blass, A., Groupwise density and related cardinals, Archive for Mathematical Logic, vol. 30 (1990), pp. 111.CrossRefGoogle Scholar
[2]Blass, A., Combinatorial cardinal characteristics of the continuum, Handbook of set theory (Foreman, M., Kanamori, A., and Magidor, M., editors), Kluwer Academic Publishers, Dordrecht, to appear.Google Scholar
[3]Blass, A. and Laflamme, C., Consistency results about filters and the number of inequivalent growth types, this Journal, vol. 54 (1989), pp. 5056.Google Scholar
[4]Blass, A. and Mildenberger, H., On the cofinality of ultrapowers, this Journal, vol. 64 (1999), pp. 727736.Google Scholar
[5]Hurewicz, W., Über eine Verallgemeinerung des Borelschen Theorems, Mathematische Zeitschrift, vol. 24 (1925), pp. 401421.CrossRefGoogle Scholar
[6]Hurewicz, W., Über Folgen stetiger Funktionen, Fundamenta Mathematicae, vol. 9 (1927), pp. 193204.CrossRefGoogle Scholar
[7]Menger, K., Einige Überdeckungssätze der Punktmengenlehre, Sitzungsberichte der Wiener Akademie, vol. 133 (1924), pp. 421444.Google Scholar
[8]Recław, I., Every Luzin set is undetermined in point-open game, Fundamenta Mathematicae, vol. 144 (1994), pp. 4354.CrossRefGoogle Scholar
[9]Scheepers, M., Selection principles and covering properties in topology, Note di Matematica, vol. 22 (2003), pp. 341.Google Scholar
[10]Tsaban, B., Additivity numbers of covering properties, Selection principles and covering properties in topology (Kočinac, L. D. R., editor), Quaderni di Matematica, to appear, http://arxiv.org/abs/math.GN/0604451.Google Scholar
[11]Tsaban, B., Some new directions in infinite-combinatorial topology, Set theory (Bagaria, J. and Todorčevic, S., editors), Trends in Mathematics, Birkhauser, to appear 2006, http://arxiv.org/abs/math.GN/0409069.Google Scholar
[12]Tsaban, B. and Zdomskyy, L., Scales, fields, and a problem of Hurewicz, http://arxiv.org/abs/math.GN/0507043, submitted.Google Scholar
[13]Zdomskyy, L., A semifilter approach to selection principles, Commentationes Mathematicae Universitatis Carolinae, vol. 46 (2005), pp. 525540.Google Scholar