Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T04:07:18.548Z Has data issue: false hasContentIssue false

Mathematical significance of consistency proofs

Published online by Cambridge University Press:  12 March 2014

Extract

The principal aim of the present paper is to sketch some mathematical applications of the work of the Hilbert school in the foundations of mathematics. Most of them depend on the ε-theorems of Hilbert-Bernays II [6], or of Ackermann [1], but instead the work of Gentzen [5] or Schütte [25], which does not use the ε-symbol, could have been applied.

The avowed purpose of all this work is described in the introduction to volume I of Hilbert-Bernays: the consistency of the usual principles of proof is to be established by means of finitist methods, or at least, by means of methods which are more “evident” or more “constructive” than the principles under discussion. This formulation seems to have several defects:

  • (1) Since the notion of constructive proof is vague, the whole formulation of the program is vague; and though an exact formulation constitutes, of course, an interesting problem for the logician, because of this vagueness the mathematician does not find the program attractive.

  • (2) The formulation does not cover too well the actual substance of the material contained in [6]; e.g. the ε-theorems for the predicate calculus go far beyond establishing mere consistency of the predicate calculus. It is significant that it is precisely these theorems which lead to the more interesting applications, e.g. the use of the ε-theorems with equality in the solution of Hilbert's 17th problem given below.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ackermann, W., Zur Widerspruchsfreiheit der reinın Zahlentheorie, Mathematische Annalen, vol. 117 (1940), pp. 162194.CrossRefGoogle Scholar
[2]Artin, E., Über die Zerlegung definiter Funktionen in Quadrate, Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität, vol. 5 (1927), pp. 100115.CrossRefGoogle Scholar
[3]Bernays, P., Über den Zusammenhang des Herbrand'sehen Satzes mit den neueren Ergebnissen von Schütte und Stenius, Proceedings of the International Congress of mathematicians 1954, Amsterdam, vol. 2, p. 397.Google Scholar
[4]Dekker, J. C. E., A non-constructive extension of the number system, this Journal, vol. 20 (1955), pp. 204205.Google Scholar
[5]Gentzen, G., Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der trans-finiten Induktion in der reinen Zahlentheorie, Mathematische Annalen, vol. 119 (1943), pp. 140161.CrossRefGoogle Scholar
[6]Hilbert, D. and Bernays, P., Grundlagen der Mathematik, vol. 2, Berlin (Springer), 1939.Google Scholar
[7]Ingham, A. E., The distribution of prime numbers, Cambridge (University Press), 1932.Google Scholar
[8]Kleene, S. C., Introduction to metamathematics, New York and Toronto (Van Nostrand), Amsterdam (North Holland) and Groningen (Noordhoff), 1952.Google Scholar
[9]Kleene, S. C., Arithmetical predicates and function quantifiers, Transactions of the American Mathematical Society, vol. 79 (1955), pp. 312340.CrossRefGoogle Scholar
[10]Kleene, S. C., On the forms of predicates in the theory of constructive ordinals (second paper), American Journal of Mathematics, vol. 77 (1955), pp. 405428.CrossRefGoogle Scholar
[11]Kreisel, G., On the interpretation of non-finitist proofs, I and II, this Journal, vol. 16 (1951), pp. 241267 and vol. 17 (1952), pp. 43–58.Google Scholar
[12]Kreisel, G., On the concepts of completeness and interpretatio of formal systems, Fundamenta mathematicae, vol. 39 (1952), pp. 103127.CrossRefGoogle Scholar
[13]Kreisel, G., Some elementary inequalities, Koninklijke Nederlandse Akademie van Wetenschappen, Proceedings of the Section of Sciences, vol. 52(1952), pp. 334338.Google Scholar
[14]Kreisel, G., Some concepts concerning formal systems of number theory, Mathematische Zeitschrift, vol. 57 (1952), pp. 112.Google Scholar
[15]Kreisel, G., Note on arithmetic models for consistent formulae of the predicate calculus II, Proceedings of XIth International Congress of Philosophy, vol. 14 (1953), pp. 3949.Google Scholar
[16]Kreisel, G., Models, translations and interpretations, Mathematical interpretation of formal systems, Studies in logic and the foundations of mathematics, Amsterdam (North Holland), 1955, pp. 2650.Google Scholar
[17]Kreisel, G., Hypotheses on algebraically closed extensions, Bulletin of the American Mathematical Society, vol. 63 (1957), p. 99.Google Scholar
[17a]Kreisel, G., Hubert's 17th problem I (abstract), Bulletin of the American Mathematical Society, vol. 63 (1957), p. 99.Google Scholar
[17b]Kreisel, G., Hubert's 17th problem II (abstract). Bulletin of the American Mathematical Society, vol. 63 (1957), p. 100.Google Scholar
[18]Łos, J., Mostowski, A. and Rasiowa, H., A proof of Herbrand's theorem, Journal de Mathématiques Pures et Appliqués, vol. 35 (1956), pp. 1925.Google Scholar
[19]Mostowski, A., On definable sets of positive integers, Fundamenta matine-maticae, vol. 34 (1947), pp. 81112.Google Scholar
[20]Mostowski, A., On a system of axioms which has no recursively enumerable arithmetic model, Fundamenta mathematicae, vol. 40 (1953), pp. 5861.CrossRefGoogle Scholar
[21]Mostowski, A., A formula with no recursively enumerable model, Fundamenta mathematicae, vol. 42 (1955), pp. 125140.CrossRefGoogle Scholar
[22]Putnam, H., Arithmetic models for consistent formulae of quantification theory, this Journal, vol. 22 (1957), pp. 110111.Google Scholar
[23]Robinson, A., On ordered fields and definite functions, Mathematische Annalen, vol. 130 (1955), pp. 257271.CrossRefGoogle Scholar
[24]Rosser, J. B., Extensions of some theorems of Gödel and Church, this Journal vol. 1 (1936), pp. 8791.Google Scholar
[25]Schütte, K., Schlussweisen-Kalküle der Prädikatenlogik, Mathematische Annalen, vol. 122 (1951), pp. 4765.CrossRefGoogle Scholar
[26]Schütte, K., Beweistheoretische Erfassung der unendlichen Induktion in der Zahlentheorie, Mathematische Annalen, vol. 122 (1951), pp. 369389.Google Scholar
[27]Schütte, K., Beweistheoretische Untersuchung der verzweigten Analysis, Mathematische Annalen, vol. 124 (1953), pp. 123147.Google Scholar
[28]Shoenfield, J. R., Open sentences in partial systems of arithmetic (abstract), this Journal, vol. 22 (1957), p. 112.Google Scholar
[29]Skewes, S., On the difference π(x) − li(x), II, Proceedings of the London Mathematical Society (3), vol. 5 (1955), pp. 4870.Google Scholar
[30]Tarski, A., A decision method for elementary algebra and geometry, 2nd. ed., Berkeley, Calif., 1951.CrossRefGoogle Scholar
[31]Turing, A. M., Systems of logic based on ordinals. Proceedings of the London Mathematical Society (2), vol. 45 (1939), pp. 161228.Google Scholar
[32]Summaries of talks presented at the Summer Institute of Symbolic Logic in 1957 at Cornell University (mimeographed, 3 volumes).Google Scholar