Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-04T05:29:19.451Z Has data issue: false hasContentIssue false

How connected is the intuitionistic continuum?

Published online by Cambridge University Press:  12 March 2014

Dirk Van Dalen*
Affiliation:
Department of Philosophy, Utrecht University, Utrecht, The Netherlands, E-mail: [email protected]

Extract

In the twenties Brouwer established the well-known continuity theorem “every real function is locally uniformly continuous,” [3, 2, 5]. From this theorem one immediately concludes that the continuum is indecomposable (unzerlegbar), i.e., if ℝ = AB and AB = ∅ (denoted by ℝ = A + B), then ℝ = A or ℝ = B.

Brouwer deduced the indecomposability directly from the fan theorem (cf. the 1927 Berline Lectures, [7, p. 49]).

The theorem was published for the first time in [6], it was used to refute the principle of the excluded middle: ¬∀x ∈ ℝ (x ∈ ℚ ∨ ¬x ∈ ℚ).

The indecomposability of ℝ is a peculiar feature of constructive universa, it shows that ℝ is much more closely knit in constructive mathematics, than in classically mathematics. The classically comparable fact is the topological connectedness of ℝ. In a way this characterizes the position of ℝ: the only (classically) connected subsets of ℝ are the various kinds of segments. In intuitionistic mathematics the situation is different; the continuum has, as it were, a syrupy nature, one cannot simply take away one point. In the classical continuum one can, thanks to the principle of the excluded third, do so. To put it picturesquely, the classical continuum is the frozen intuitionistic continuum. If one removes one point from the intuitionistic continuum, there still are all those points for which it is unknown whether or not they belong to the remaining part.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Brouwer, L. E. J., Besitzt jede reelle Zahl eine Dezimalbruchentwickelung?, Mathematische Annalen, vol. 83 (1921), pp. 201210.CrossRefGoogle Scholar
[2]Brouwer, L. E. J., Bemerkungen zum Beweise der gleichmässigen Stetigkeit voller Funktionen, Koninklijke Akademie van Wetenschappen Proc., vol. 27 (1924), pp. 644646.Google Scholar
[3]Brouwer, L. E. J., Beweis dass jede volle Funktion gleichmässig stetig ist, Koninklijke Akademie van Wetenschappen Proc, vol. 27 (1924), pp. 189193.Google Scholar
[4]Brouwer, L. E. J., Intuitionistische Einführung des Dimensionsbegriffes, Koninklijke Akademie van Wetenschappen Proc, vol. 29 (1926), pp. 855863.Google Scholar
[5]Brouwer, L. E. J., Über Definitionsbereiche von Funktionen, Mathematische Annalen, vol. 97 (1927), pp. 60–75, English translation [9], pp. 446463.CrossRefGoogle Scholar
[6]Brouwer, L. E. J., Intuitionistische Betrachtungen über den Formalismus, Sitzungsberichte der Preuszischen Akademie der Wissenschaften zu Berlin (1928), pp. 4852, English translation of §1 in [9], pp. 490–492.Google Scholar
[7]Brouwer, L. E. J., Intuitionismus (van Dalen, D., editor), Bibliographisches Institut, Wissenschaftsverlag, Mannheim, 1992.Google Scholar
[8]Troelstra, A. S. and van Dalen, D., Constructivism in mathematics, I, II, North-Holland, Amsterdam, 1988.Google Scholar
[9]van Heijenoort, J., From Frege to Gödel. A source book in mathematical logic, 1879–1931, Harvard University Press, Cambridge, Massachusetts, 1967.Google Scholar