Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T16:08:38.326Z Has data issue: false hasContentIssue false

Embedding finite lattices into the Σ20 enumeration degrees

Published online by Cambridge University Press:  12 March 2014

Steffen Lempp
Affiliation:
University of Wisconsin, Department of Mathematics, Madison, WI 53706-1388, USA, E-mail: [email protected]
Andrea Sorbi
Affiliation:
Università Di Siena, Dipartimento Di Matematica, 1-53100 Siena, Italy, E-mail: [email protected]

Abstract

We show that every finite lattice is embeddable into the Σ20 enumeration degrees via a lattice-theoretic embedding which preserves 0 and 1.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Recursion Theory and Complexity: Proceedings of the '97 Kazan Workshop (Berlin, New York) (Arslanov, M. and Lempp, S., editors), De Gruyter, W., 1999.CrossRefGoogle Scholar
[2]Ahmad, S., Embedding the diamond in the Σ2 enumeration degrees, this Journal, vol. 50 (1991), pp. 195212.Google Scholar
[3]Ambos-Spies, K., On the structure of the recursively enumerable degrees, Ph.D. thesis, University of Munich, 1980.Google Scholar
[4]Ambos-Spies, K., Lempp, S., and Lerman, M., Lattice embeddings into the r. e. degrees preserving 0 and 1, Journal of the London Mathematical Society, vol. 49 (1994), pp. 115.CrossRefGoogle Scholar
[5]Calhoun, W. C. and Slaman, T. A., The Π20 e-degrees are not dense, this Journal, vol. 61 (1996), pp. 13641379.Google Scholar
[6]Cooper, S. B., Partial degrees and the density problem, this Journal, vol. 47 (1982), pp. 854859.Google Scholar
[7]Cooper, S. B., Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ2 sets are dense, this Journal, vol. 49 (1984), pp. 503513.Google Scholar
[8]Cooper, S. B., Enumeration reducibility using bounded information: Counting minimal covers, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 33 (1987), pp. 537560.CrossRefGoogle Scholar
[9]Lachlan, A. H., Lower bounds for pairs of recursively enumerable degrees, Proceedings of the London Mathematical Society, vol. 16, 1966, pp. 537569.CrossRefGoogle Scholar
[10]Lachlan, A. H., Embedding nondistributive lattices in the recursively enumerable degress, Conference in Mathematical Logic, London, 1970 (Hodges, W., editor), Lecture Notes in Mathematics, vol. 255, Springer-Verlag, Heidelberg, 1972, pp. 149177.Google Scholar
[11]Lachlan, A. H. and Soare, R. I, Not every finite lattice is embeddable in the recursively enumerable degrees, Advances in Mathematics, vol. 37 (1980), pp. 7482.CrossRefGoogle Scholar
[12]Lempp, S. and Lerman, M., A finite lattice without a critical triple that cannot be embedded into the enumerable Turing degrees, Annals of Pure and Applied Logic, vol. 87 (1997), pp. 167185.CrossRefGoogle Scholar
[13]McEvoy, K. and Cooper, S. B., On minimal pairs of enumeration degrees, this Journal, vol. 50 (1985), pp. 9831001.Google Scholar
[14]Nies, A. and Sorbi, A., Branching in the enumeration degrees of Σ20 sets, Israel Journal of Mathematics, vol. 110 (1999), pp. 2959.CrossRefGoogle Scholar
[15]Odifreddi, P., Classical Recursion Theory (Volume I), North-Holland Publishing Corporation, Amsterdam, 1989.Google Scholar
[16]Rogers, H. Jr., Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967.Google Scholar
[17]Soare, R. I., Recursively enumerable sets and degrees, Perspectives in Mathematical Logic, Omega Series, Springer-Verlag, Heidelberg, 1987.CrossRefGoogle Scholar
[18]Thomason, S. K., Sublattices of the recursively enumerable degrees, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 17 (1971), pp. 273280.CrossRefGoogle Scholar