Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T07:37:48.920Z Has data issue: false hasContentIssue false

Dimension theory and parameterized normalization for D-semianalytic sets over non-Archimedean fields

Published online by Cambridge University Press:  12 March 2014

Y. Firat Çelikler*
Affiliation:
Mathematics Department, Purdue University, West Lafayette, Indiana 47907, USA, E-mail: [email protected]

Abstract

We develop a dimension theory for D-semianalytic sets over an arbitrary non-Arehimedean eomplete field. Our main results are the equivalence of several notions of dimension and a theorem on additivity of dimensions of projections and fibers in characteristic 0. We also prove a parameterized version of normalization for D-semianalytic sets.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Abhyankar, S. S., Local analytic geometry, Academic Press, 1964.Google Scholar
[2] Bartenwerfer, W., Die Beschränktheit der Stückzahl der Fasern K-analytischer Abbildungen, Journal für die reine und angewandte Mathematik, vol. 416 (1991), pp. 4970.Google Scholar
[3] Bosch, S., Güntzer, U., and Remmert, R., Non-Archimedean analysis, Springer-Verlag, 1984.Google Scholar
[4] çelikler, Y. F., Parameterized stratification and piece number of D-semianalytic sets. Submitted, available at: arXiv:math.LO/0409095.Google Scholar
[5] Denef, J. and van den Dries, L., p-adic and real subanalytic sets, Annals of Mathematics, vol. 128 (1988), pp. 79138.CrossRefGoogle Scholar
[6] van den Dries, L., Dimension of definable sets, algebraic boundedness and Henselian fields, Annals of Pure and Applied Logic, vol. 45 (1989). pp. 189209.CrossRefGoogle Scholar
[7] Haskell, D. and Macpherson, D., A version of o-minimality for the p-adics, this Journal, vol. 62 (1997), no. 4. pp, 10751092.Google Scholar
[8] Lipshitz, L., Rigid subanalytic sets, American Journal of Mathematics, vol. 115 (1993), pp. 77-108.CrossRefGoogle Scholar
[9] Lipshitz, L. and Robinson, Z., Dimension theory and smooth stratification of rigid subanalytic sets, Logic Colloquium '98 (Buss, S., Hajek, P., and Pudlak, P., editors). Lecture Notes in Logic, vol. 13, AK Peters, 2000, pp. 302315.Google Scholar
[10] Lipshitz, L., Model completeness and subanalytic sets, Astérisque. vol. 264 (2000), pp. 109126.Google Scholar
[11] Lipshitz, L., Rings of separated power series, Astérisque, vol. 264 (2000), pp. 3108.Google Scholar
[12] Macintyre, A., On definable subsets of p-adic fields, this Journal, vol. 41 (1976), pp. 605610.Google Scholar
[13] Matsumura, H., Commutative ring theory, Cambridge University Press, 1989.Google Scholar