Article contents
DEGREES OF CATEGORICITY AND SPECTRAL DIMENSION
Published online by Cambridge University Press: 01 May 2018
Abstract
A Turing degree d is the degree of categoricity of a computable structure ${\cal S}$ if d is the least degree capable of computing isomorphisms among arbitrary computable copies of ${\cal S}$. A degree d is the strong degree of categoricity of ${\cal S}$ if d is the degree of categoricity of ${\cal S}$, and there are computable copies ${\cal A}$ and ${\cal B}$ of ${\cal S}$ such that every isomorphism from ${\cal A}$ onto ${\cal B}$ computes d. In this paper, we build a c.e. degree d and a computable rigid structure ${\cal M}$ such that d is the degree of categoricity of ${\cal M}$, but d is not the strong degree of categoricity of ${\cal M}$. This solves the open problem of Fokina, Kalimullin, and Miller [13].
For a computable structure ${\cal S}$, we introduce the notion of the spectral dimension of ${\cal S}$, which gives a quantitative characteristic of the degree of categoricity of ${\cal S}$. We prove that for a nonzero natural number N, there is a computable rigid structure ${\cal M}$ such that $0\prime$ is the degree of categoricity of ${\cal M}$, and the spectral dimension of ${\cal M}$ is equal to N.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © The Association for Symbolic Logic 2018
References
REFERENCES
- 9
- Cited by