No CrossRef data available.
Article contents
CICHOŃ’S MAXIMUM WITH EVASION NUMBER
Published online by Cambridge University Press: 27 January 2025
Abstract
We show that the evasion number $\mathfrak {e}$ can be added to Cichoń’s maximum with a distinct value. More specifically, it is consistent that
$\aleph _1<\operatorname {\mathrm {add}}(\mathcal {N})<\operatorname {\mathrm {cov}}(\mathcal {N})<\mathfrak {b}<\mathfrak {e}<\operatorname {\mathrm {non}}(\mathcal {M})<\operatorname {\mathrm {cov}}(\mathcal {M})<\mathfrak {d}<\operatorname {\mathrm {non}}(\mathcal {N})<\operatorname {\mathrm {cof}}(\mathcal {N})<2^{\aleph _0}$ holds.
- Type
- Article
- Information
- Copyright
- © The Author(s), 2025. Published by Cambridge University Press on behalf of The Association for Symbolic Logic
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250125145942459-0609:S0022481224000653:S0022481224000653_inline1518.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250125145942459-0609:S0022481224000653:S0022481224000653_inline1519.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250125145942459-0609:S0022481224000653:S0022481224000653_inline1520.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250125145942459-0609:S0022481224000653:S0022481224000653_inline1521.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250125145942459-0609:S0022481224000653:S0022481224000653_inline1522.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250125145942459-0609:S0022481224000653:S0022481224000653_inline1523.png?pub-status=live)