Published online by Cambridge University Press: 12 March 2014
In 1986, Osherson, Stob and Weinstein asked whether two variants of anomalous vacillatory learning, TxtFex** and TxtFext**, could be distinguished [3]. In both, a machine is permitted to vacillate between a finite number of hypotheses and to make a finite number of errors. TxtFext**-learning requires that hypotheses output infinitely often must describe the same finite variant of the correct set, while TxtFex**-learning permits the learner to vacillate between finitely many different finite variants of the correct set. In this paper we show that TxtFex** ≠ TxtFext**, thereby answering the question posed by Osherson, et al. We prove this in a strong way by exhibiting a family in TxtFex*2 TxtFext**.