Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T01:33:55.175Z Has data issue: false hasContentIssue false

ABOUT SOME FIXED POINT AXIOMS AND RELATED PRINCIPLES IN KRIPKE–PLATEK ENVIRONMENTS

Published online by Cambridge University Press:  01 August 2018

GERHARD JÄGER
Affiliation:
INSTITUT FÜR INFORMATIK, UNIVERSITÄT BERN NEUBRÜCKSTRASSE 10, CH-3012 BERN, SWITZERLANDE-mail:[email protected]
SILVIA STEILA
Affiliation:
INSTITUT FÜR INFORMATIK, UNIVERSITÄT BERN NEUBRÜCKSTRASSE 10, CH-3012 BERN, SWITZERLANDE-mail:[email protected]

Abstract

Starting points of this article are fixed point axioms for set-bounded monotone Σ1 definable operators in the context of Kripke–Platek set theory $KP$. We analyze their relationship to other principles such as maximal iterations, bounded proper injections, and Σ1 subset-bounded separation. One of our main results states that in $KP + (V\, = \,L)$ all these principles are equivalent to Σ1 separation.

Type
Articles
Copyright
Copyright © The Association for Symbolic Logic 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barwise, J., Admissible Sets and Structures, Perspectives in Mathematical Logic, vol. 7, Springer, Berlin, 1975.CrossRefGoogle Scholar
Buchholz, W., Feferman, S., Pohlers, W., and Sieg, W., Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies, Lecture Notes in Mathematics, vol. 897, Springer, Berlin, 1981.CrossRefGoogle Scholar
Curi, G., On Tarski’s fixed point theorem. Proceedings of the American Mathematical Society, vol. 143 (2015), no. 10, pp. 44394455.CrossRefGoogle Scholar
Feferman, S., Operational set theory and small large cardinals. Information and Computation, vol. 207 (2009), pp. 971979.CrossRefGoogle Scholar
Fitting, M., Notes on the mathematical aspects of Kripke’s theory of truth. Notre Dame Journal of Formal Logic, vol. 27 (1986), no. 1, pp. 7588.CrossRefGoogle Scholar
Jäger, G., Zur Beweistheorie der Kripke-Platek-Mengenlehre über den natürlichen Zahlen. Archiv für mathematische Logik und Grundlagenforschung, vol. 22 (1982), no. 3–4, pp. 121139.CrossRefGoogle Scholar
Jäger, G., On Feferman’s operational set theory $OST$. Annals of Pure and Applied Logic, vol. 150 (2007), no. 1–3, pp. 1939.CrossRefGoogle Scholar
Jäger, G. and Steila, S., Fixed points of Σ1 operators and related principles in Kripke-Platek environments. Part II: adding axiom $\left( \beta \right)$, 2017, in preparation.Google Scholar
Kunen, K., Set Theory. An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland, Amsterdam, 1980.Google Scholar
Mathias, A. R. D., The strength of Mac Lane set theory. Annals of Pure and Applied Logic, vol. 110 (2001), no. 1, pp. 107234.CrossRefGoogle Scholar
Moschovakis, Y. N., Elementary Induction on Abstract Structures, Studies in Logic and the Foundations of Mathematics, vol. 77, North-Holland, Amsterdam, 1974. (Reprinted by Dover Publications, 2008).Google Scholar
Moschovakis, Y. N., On non-monotone inductive definability. Fundamenta Mathematicae, vol. 82 (1974), no. 1, pp. 3983.CrossRefGoogle Scholar
Rathjen, M., Monotone inductive definitions in explicit mathematics, this Journal, vol. 61 (1996), no. 1, pp. 125–146.Google Scholar
Rathjen, M., Explicit mathematics with the monotone fixed point principle, this Journal, vol. 63 (1998), no. 2, pp. 509–542.Google Scholar
Rathjen, M., Explicit mathematics with the monotone fixed point principle. II: Models, this Journal, vol. 64 (1999), no. 2, pp. 517–550.Google Scholar
Rathjen, M., Relativized ordinal analysis: The case of power Kripke-Platek set theory. Annals of Pure and Applied Logic, vol. 165 (2014), no. 1, pp. 316339.CrossRefGoogle Scholar
Takahashi, M., .${{\rm{\tilde{\Delta }}}_1}$-definability in set theory, Conference in Mathematical Logic – London ’70 (Hodges, W., editor), Lecture Notes in Mathematics, vol. 255, Springer, Berlin, 1972, pp. 281304.CrossRefGoogle Scholar
Tarski, A., A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics, vol. 5 (1955), no. 2, pp. 285309.CrossRefGoogle Scholar
Welch, P. D., Weak systems of determinacy and arithmetical quasi-inductive definitions, this Journal, vol. 76 (2011), no. 2, pp. 418–436.Google Scholar