Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T00:37:45.249Z Has data issue: false hasContentIssue false

0-categorical modules

Published online by Cambridge University Press:  12 March 2014

Walter Baur*
Affiliation:
Yale University, New Haven, Connecticut 06520

Abstract

It is shown that the first-order theory ThR(A) of a countable module over an arbitrary countable ring R is 0-categorical if and only if Ai finite, nω, κiω. Furthermore, ThR(A) is 0-categorical for all R-modules A if and only if R is finite and there exist only finitely many isomorphism classes of indecomposable R-modules.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Atiyah, M. F. and Macdonald, I. G., Introduction to commutative algebra, Addison-Wesley, Reading, Massachusetts, 1969.Google Scholar
[2]Berthier, D., Stability of non-model-complete theories, products, groups, Centre de Mathematique de l'Ecole Polytechnique, Paris, 1973 (preprint).Google Scholar
[3]Eklof, P. C. and Fischer, E. R., The elementary theory of abelian groups, Annals of Mathematical Logic, vol. 4 (1972), pp. 115171.CrossRefGoogle Scholar
[4]Eklof, P. C. and SABBAGH, G., Model-completions and modules, Annals of Mathematical Logic, vol. 2 (1971), pp. 251295.CrossRefGoogle Scholar
[5]Feferman, S. and Vaught, R. L., The first-order properties of algebraic systems, Fundamenta Mathematicae, vol. 47 (1959), pp. 57103.CrossRefGoogle Scholar
[6]Köthe, G., Verallgemeinerte abelsche Gruppen mit hyperkomplexem Operatorenring, Mathematische Zeitschrift, vol. 39 (1935), pp. 3144.CrossRefGoogle Scholar
[7]Sabbagh, G., Aspects logique de la pureté dans les modules, Comptes Rendus Hebdomadaires des Séances de l'Academie des Sciences, vol. 271 (1970), pp. 909912.Google Scholar
[8]Sacks, G. E., Saturated model theory, Benjamin, Reading, Massachusetts, 1972.Google Scholar
[9]Shelah, S., Stability, the f.c.p., and superstability, Annals of Mathematical Logic, vol. 3 (1971), pp. 271362.CrossRefGoogle Scholar
[10]Szmielew, W., Elementary properties of abelian groups, Fundamenta Mathematicae, vol. 41 (1955), pp. 203271.CrossRefGoogle Scholar
[11]Warfield, R. B., Purity and algebraic compactness for modules, Pacific Journal of Mathematics, vol. 28 (1969), pp. 699719.CrossRefGoogle Scholar
[12]Waszkiewicz, J. and Weglorz, B., On ω0-categoricity of powers, Bulletin de l'Academie Polonaise des Sciences, vol. 17 (1969), pp. 195199.Google Scholar