Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T10:53:19.106Z Has data issue: false hasContentIssue false

Analysis of Agreement between Expired-Air Carbon Monoxide Monitors

Published online by Cambridge University Press:  02 February 2016

Joshua L. Karelitz*
Affiliation:
Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
Valerie C. Michael
Affiliation:
Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
Kenneth A. Perkins
Affiliation:
Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
*
Address for correspondence: Joshua. L. Karelitz, University of Pittsburgh School of Medicine, 3811 O’Hara Street, Pittsburgh, PA 15213. Email: [email protected]

Abstract

Introduction: The current study examined the level of agreement in expired-air carbon monoxide (CO) values, focusing especially on those confirming abstinence, between the two most commonly used CO monitors, the Vitalograph BreathCO and the Bedfont piCO+ Smokerlyzer.

Methods: Expired-air samples were collected via both monitors from adult dependent smokers (44 M, 34 F) participating in studies using CO values to confirm abstinence durations of: 24 hours, 12 hours, or no abstinence. All met DSM-IV nicotine dependence criteria and had a mean (SD) Fagerström Test of Cigarette Dependence score of 5.1 (1.8). Paired data collected across multiple visits were analyzed by regression-based Bland–Altman method of Limits of Agreement (LoA).

Findings: Analysis indicated a lack of agreement in CO measurement between monitors. Overall, the Bedfont monitor gave mean (±SEM) readings 3.83 (±0.23) ppm higher than the Vitalograph monitor. Mean differences between monitors were larger for those ad lib smoking (5.65 ± 0.38 ppm) than those abstaining 12–24 hours (1.71 ± 0.13 ppm). Yet, there also was not consistent agreement in classification of 24-hour abstinence between monitors.

Conclusions: Systematic differences in CO readings demonstrate these two very common monitors may not result in interchangeable values, and reported outcomes in smoking research based on CO values may depend on the monitor used.

Type
Original Articles
Copyright
Copyright © The Author(s) 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addicott, M. A., Baranger, D. A., Kozink, R. V., Smoski, M. J., Dichter, G. S., & McClernon, F. J. (2012). Smoking withdrawal is associated with increases in brain activation during decision making and reward anticipation: A preliminary study. Psychopharmacology, 219 (2), 563573. doi:10.1007/s00213-011-2404-3.CrossRefGoogle ScholarPubMed
Altman, D. G. (1993). Construction of age-related reference centiles using absolute residuals. Statistics in Medicine, 12 (10), 917924. doi:10.1002/sim.4780121003.Google Scholar
American Psychiatric Association (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: Author.Google Scholar
Benowitz, N. L., Jacob, P., Hall, S., Tsoh, J., Ahijevych, K., & Jarvis, M. J. et al. (2002). Biochemical verification of tobacco use and cessation. Nicotine and Tobacco Research, 4 (2), 149159. doi:10.1080/14622200210123581.Google Scholar
Bland, J. M., & Altman, D. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet, 327 (8476), 307310. doi:10.1016/S0140-6736(86)90837-8.CrossRefGoogle Scholar
Bland, J. M., & Altman, D. G. (1995). Comparing methods of measurement: Why plotting difference against standard method is misleading. The Lancet, 346 (8982), 10851087. doi:10.1016/S0140-6736(95)91748-9.Google Scholar
Bland, J. M., & Altman, D. G. (1999). Measuring agreement in method comparison studies. Statistical Methods in Medical Research, 8 (2), 135160. doi:10.1177/096228029900800204.CrossRefGoogle ScholarPubMed
Bland, J. M., & Altman, D. G. (2003). Applying the right statistics: Analyses of measurement studies. Ultrasound in Obstetrics and Gynecology, 22 (1), 8593. doi:10.1002/uog.122.Google Scholar
Brown, R., & Richmond, S. (2005). An update on the analysis of agreement for orthodontic indices. The European Journal of Orthodontics, 27 (3), 286291. doi:10.1093/ejo/cjh078.Google Scholar
CoVita (2010). piCO+ Smokerlyzer operating manual. Retrieved from http://www.covita.net/pdfs/piCO+%20Manual.pdf.Google Scholar
Cropsey, K. L., Trent, L. R., Clark, C. B., Stevens, E. N., Lahti, A. C., & Hendricks, P. S. (2014). How low should you go? Determining the optimal cutoff for exhaled carbon monoxide to confirm smoking abstinence when using cotinine as reference. Nicotine & Tobacco Research, 16 (10), 13481355. doi:10.1093/ntr/ntu085.Google Scholar
Dallery, J., & Raiff, B. R. (2007). Delay discounting predicts cigarette smoking in a laboratory model of abstinence reinforcement. Psychopharmacology, 190 (4), 485496. doi:10.1007/s00213-006-0627-5.Google Scholar
Emery, R. L., & Levine, M. D. (2015). Optimal carbon monoxide criteria to confirm smoking status among postpartum women. Nicotine & Tobacco Research. Advance online publication. doi:10.1093/ntr/ntv196.Google Scholar
Erb, P., Raiff, B. R., Meredith, S. E., & Dallery, J. (2015). The accuracy of a lower-cost breath carbon monoxide meter in distinguishing smokers from non-smokers. Journal of Smoking Cessation, 10 (01), 5964. doi:10.1017/jsc.2013.37.CrossRefGoogle Scholar
European Respiratory Society (n.d.). Exhaled CO measurement. Retrieved January 6, 2015, from www.ersbuyersguide.org/features/category/exhaled-co-measurement.Google Scholar
Fagerström, K. (2012). Determinants of tobacco use and renaming the FTND to the Fagerström test for cigarette dependence. Nicotine and Tobacco Research, 14 (1), 7578. doi:10.1093/ntr/ntr137.Google Scholar
Froeliger, B., Modlin, L., Wang, L., Kozink, R. V., & McClernon, F. J. (2012). Nicotine withdrawal modulates frontal brain function during an affective Stroop task. Psychopharmacology, 220 (4), 707718. doi:10.1007/s00213-011-2522-y.CrossRefGoogle ScholarPubMed
Hanneman, S. K. (2008). Design, analysis and interpretation of method-comparison studies. AACN Advanced Critical Care, 19 (2), 223. doi:10.1097/01.AACN.0000318125.41512.a3.Google Scholar
Heatherton, T. F., Kozlowski, L. T., Frecker, R. C., & Fagerström, K. O. (1991). The Fagerström test for nicotine dependence: A revision of the Fagerström tolerance questionnaire. British Journal of Addiction, 86 (9), 11191127. doi:10.1111/j.1360-0443.1991.tb01879.x.Google Scholar
Jarvis, M. J., Belcher, M., Vesey, C., & Hutchison, D. C. (1986). Low cost carbon monoxide monitors in smoking assessment. Thorax, 41 (11), 886.Google Scholar
Javors, M. A., Hatch, J. P., & Lamb, R. J. (2005). Cut-off levels for breath carbon monoxide as a marker for cigarette smoking. Addiction, 100 (2), 159167. doi:10.1111/j.1360-0443.2004.00957.x.Google Scholar
Lamb, R. J., Morral, A. R., Galbicka, G., Kirby, K. C., & Iguchi, M. Y. (2005). Shaping reduced smoking in smokers without cessation plans. Experimental and Clinical Psychopharmacology, 13 (2), 83. doi:10.1037/1064-1297.13.2.83.CrossRefGoogle ScholarPubMed
Ludbrook, J. (2002). Statistical techniques for comparing measurers and methods of measurement: A critical review. Clinical and Experimental Pharmacology and Physiology, 29 (7), 527536. doi:10.1046/j.1440-1681.2002.03686.x.Google Scholar
Mantha, S., Roizen, M. F., Fleisher, L. A., Thisted, R., & Foss, J. (2000). Comparing methods of clinical measurement: Reporting standards for Bland and Altman analysis. Anesthesia & Analgesia, 90 (3), 593602. doi:10.1097/00000539-200003000-00018.CrossRefGoogle ScholarPubMed
McNeill, A. D., Owen, L. A., Belcher, M., Sutherland, G., & Fleming, S. (1990). Abstinence from smoking and expired-air carbon monoxide levels: Lactose intolerance as a possible source of error. American Journal of Public Health, 80 (9), 11141115. doi:10.2105/AJPH.80.9.1114.Google Scholar
Middleton, E. T., & Morice, A. H. (2000). Breath carbon monoxide as an indication of smoking habit. CHEST Journal, 117 (3), 758763. doi:10.1378/chest.117.3.758.Google Scholar
Morimatsu, H., Takahashi, T., Matsusaki, T., Hayashi, M., Matsumi, J., & Shimizu, H. et al. (2010). An increase in exhaled CO concentration in systemic inflammation/sepsis. Journal of Breath Research, 4 (4), 047103. doi:10.1088/1752-7155/4/4/047103.Google Scholar
Moscato, U., Poscia, A., Gargaruti, R., Capelli, G., & Cavaliere, F. (2014). Normal values of exhaled carbon monoxide in healthy subjects: Comparison between two methods of assessment. BMC Pulmonary Medicine, 14 (1), 204. doi:10.1186/1471-2466-14-204.Google Scholar
Perkins, K. A., Jao, N. C., & Karelitz, J. L. (2013a). Consistency of daily cigarette smoking amount in dependent adults. Psychology of Addictive Behaviors, 27 (3), 723. doi:10.1037/a0030287.CrossRefGoogle ScholarPubMed
Perkins, K. A., Karelitz, J. L., Conklin, C. A., Sayette, M. A., & Giedgowd, G. E. (2010). Acute negative affect relief from smoking depends on the affect situation and measure but not on nicotine. Biological Psychiatry, 67 (8), 707714. doi:10.1016/j.biopsych.2009.12.017.Google Scholar
Perkins, K. A., Karelitz, J. L., & Jao, N. C. (2013b). Optimal carbon monoxide criteria to confirm 24-hr smoking abstinence. Nicotine and Tobacco Research, 15 (5), 978982. doi:10.1093/ntr/nts205.Google Scholar
Perkins, K. A., Karelitz, J. L., & Michael, V. C. (2015). Reinforcement enhancing effects of acute nicotine via electronic cigarettes. Drug and Alcohol Dependence, 153, 104108. doi:10.1016/j.drugalcdep.2015.05.041.Google Scholar
Perkins, K. A., Karelitz, J. L., Michael, V. C., Fromuth, M., Conklin, C. A., & Chengappa, K.R. et al. (2016). Initial evaluation of fenofibrate for efficacy in aiding smoking abstinence. Nicotine & Tobacco Research. 18 (1), 7478. doi:10.1093/ntr/ntv085.Google ScholarPubMed
Raiff, B. R., Faix, C., Turturici, M., & Dallery, J. (2010). Breath carbon monoxide output is affected by speed of emptying the lungs: Implications for laboratory and smoking cessation research. Nicotine and Tobacco Research, 12 (8), 834838. doi:10.1093/ntr/ntq090.Google Scholar
VanderVeen, J. W., Cohen, L. M., Cukrowicz, K. C., & Trotter, D. R. (2008). The role of impulsivity on smoking maintenance. Nicotine & Tobacco Research, 10 (8), 13971404.Google Scholar
Vitalograph (n.d.). Vitalograph BreathCO quick start user training manual. Retrieved from http://vitalograph.com/downloads/view/07323.Google Scholar
West, R. J. (1984). The effect of duration of breath-holding on expired air carbon monoxide concentration in cigarette smokers. Addictive Behaviors, 9 (3), 307309. doi:10.1016/0306-4603(84)90026-1.Google Scholar