Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T21:00:49.305Z Has data issue: false hasContentIssue false

Radiation and thermal effects on polymeric immobilization devices used in patients submitted to radiotherapy

Published online by Cambridge University Press:  24 June 2011

C. Pereira-Loch
Affiliation:
Hospital Sao Jose (HSJ), Rua Cel. Pedro Benedet 630, 88801-250, Criciuma SC, Brasil
R. Benavides*
Affiliation:
Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo, Coah., 25253, México
M. Fogliato S. Lima
Affiliation:
Universidade Luterana do Brasil, Av. Farroupilha 8001- PPGEAM, Prédio 29, S. 203, 92450-900, Canoas, RS, Brasil
B.M. Huerta
Affiliation:
Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo, Coah., 25253, México
*
Correspondence to: R. Benavides, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo, Coah., 25253, México. E-mail: [email protected]

Abstract

Immobilization devices in radiotherapy are made of a soft plastic easy to mould when immersed in hot water. Same item is usually used for 6 patients (according to protocol), but at Hospital Sao Jose (HSJ) they have been showing some deformation during the re-utilization process. The latter is the reason for this research where devices were treated with 6 thermal conditions, 6 irradiation procedures and the joint effect of both treatments. DSC, TGA and WAXD indicated devices are made of polycaprolactone (PCL), but no signs of degradation, except a slight variation in crystalinity; however, mechanical properties by means of Young’s modulus steadily increase its values through number of treatments up to a 20%. Activation energy (Ea) obtained by multi-ramps of TGA-Arrhenius evaluated for the most treated samples (6th treatment) indicates that temperature facilitates degradation while irradiation and joint treatments enhance the stability of PCL, apparently by crosslinking.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Salvajoli, JV, Souhami, L, Faria, SL. Radioterapia em Oncologia. São Paulo: Medsi Ed. Médica e Científica Ltda, 1999, 1243 p.Google Scholar
Khan, FM, Potish, RA. Treatment Planning in Radiation Oncology. Baltimore: Williams & Wilkins, 1998, 645 p.Google Scholar
Dunscombe, P, Johnson, H, Aresnault, C, Mawko, G, Bissonnette, JP, Seuntjens, J. The development of quality control standards for radiation therapy equipment in Canada. J Appl Clin Med Phys 2007; 8:108118.CrossRefGoogle Scholar
Karzmark, CJ, Morton, RJ. A Primer on Theory and Operation of Linear Accelerators in Radiation Therapy: Madison (WI): Medical Physics Publishing Corp, 1989, 41 p.Google Scholar
Van Dyk, J, editor. The Modern Technology of Radiation Oncology, vol. 2. Madison (WI): Medical Physics Publishing, 2005, 1072 p.Google Scholar
Kang, H, Lovelock, DM, Yorke, ED, Kriminiski, S, Lee, N, Amols, HI. Accurate positioning for head and neck cancer patients using 2D and 3D image guidance. J Appl Clin Med Phys 2011; 12:8696.CrossRefGoogle Scholar
Sánchez, EMS, Cabral, LC, Felisberti, MI. Anais do Congresso Brasileiro de Engenharia e Ciência dos Materiais. Águas de São Pedro (SP), Brasil, 2000, p. 14.Google Scholar
Vinhas, GM, Souto, RM, de Almeida, YMB. Radiolytic degradation and stabilization of Poly(vinyl Chloride). Polym Deg Stab 2004; 83:429433.Google Scholar
Plivelic, TS, Cassu, SN, Gonçalves, MC, Torriani, IL. Experiências Simultâneas de Espalhamento de Raios X e Calorimetria Diferencial de Varredura (SAXS/WAXD/DSC) com Resolução Temporal Utilizando Radiação Síncroton. Polímeros: Ciência e Tecnol 2005; 15:199206.Google Scholar
Osa, DA, Penteado, DF, Calil, MR. Propriedades Térmicas e Biodegradabilidade de PCL e PHB em um Pool de Fungos. Revista de Ciência e Tecnol 2000; 15:7580.Google Scholar