Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-09T22:36:19.217Z Has data issue: false hasContentIssue false

Monte Carlo simulation of proton therapy using bio-nanomaterials

Published online by Cambridge University Press:  15 April 2016

Chafika Belamri
Affiliation:
Laboratory of Analysis and Application of Radiation, Department of genie physics, University of Sciences and Technology M. Boudiaf (USTO-MB), Oran, Algeria
Anis Samy Amine Dib*
Affiliation:
Laboratory of Analysis and Application of Radiation, Department of genie physics, University of Sciences and Technology M. Boudiaf (USTO-MB), Oran, Algeria
Ahmed H. Belbachir
Affiliation:
Laboratory of Analysis and Application of Radiation, Department of genie physics, University of Sciences and Technology M. Boudiaf (USTO-MB), Oran, Algeria
*
Correspondence to: Anis Samy Amine Dib, Laboratory of Analysis and Application of Radiation, Department of genie physics, University of Sciences and Technology M. Boudiaf (USTO-MB), BP 1505, Oran 31000, Algeria. Tel: +213 55 46 23 84. E-mail: [email protected]

Abstract

Introduction

In recent years, there has been a spectacular development in nanomedicine field with new nanoparticles for diagnosis and cancer therapy. Although most researchers have been always interested in gold nanoparticles (GNPs)

Materials and methods

In the present work we present a comparison between the use of bio-nanomaterials in proton therapy.

Conclusion

Consequently, our results show that platinum nanoparticles (PtNPs) present an interesting advantages comparing with GNPs and silver nanoparticles. On the other hand, the use of PtNPs facilitates in a considerable way the proton therapy.

Type
Original Articles
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fix, M K, Frei, D, Volken, W, Born, E J, Aebersold, D M, Manse, P. Macro Monte Carlo for dose calculation of proton beams. Phys Med Biol 2013; 58: 20272044.Google Scholar
2. Habrand, J L, Baron, E, Bourhis, J, Datchary, J, Mazal, A, Meflah, K. Hadrontherapy – macrobenefit in cancer therapy? J Phys Conf Ser 2012; 373: 1218.Google Scholar
3. Garonna, A, Amaldi, U, Bonomi, R, Campo, D, Rizzogglio, A, Verdu Andrs, S. Cyclinac medical accelerators using pulsed C6+/H2+ion sources. International Symposium on Electron Beam Ion Sources and Traps, 7th–10th April, Stockholm, Sweden: JINST 5 C09004, 2010.Google Scholar
4. Baron, M H, Pommier, P, Favrel, V, Truc, G, Balosso, J, Rochat, J. A ‘one-day survey’: as a reliable estimation of the potential recruitment for proton and carbon-ion therapy in France. Radiother Oncol 2004; 73 (suppl 2): S15S17.Google Scholar
5. Herold, D M, Das, I J, Stobbe, C C, Iyer, R V, Chapman, J D. Gold mesospheres: a selective technique for producing biologically effective dose-enhancement. Int J Radiat Biol 2000; 76: 13571364.Google Scholar
6. Berrezoug, A, Dib, A S A, Belbachir, A H. Enhanced X-ray absorption by using gold nanoparticles in a biological tissue. Radioprotection 2015; 50 (4): 281285.Google Scholar
7. Tsiamas, P, Liu, B, Cifter, F et al. Impact of beam quality on megavoltage radiotherapy treatment techniques utilizing gold nanoparticles for dose enhancement. Phys Med Biol 2013; 58: 451464.Google Scholar
8. Connell, P P, Hellman, S. Advances in radiotherapy and implications for the next century: a historical perspective. Cancer Res 2009; 69 (2): 383392.Google Scholar
9. Dongkyu, K, Sangyong, J. Gold nanoparticles in image-guided cancer therapy. Inorganica Chim Acta 2012; 393: 154164.Google Scholar
10. Heath, J R, Davis, M E. Nanotechnology and cancer. Annu Rev Med 2008; 59: 251265.Google Scholar
11. Jiao, P F, Zhou, H Y, Chen, L X, Yan, B. Cancer-targeting multifunctionalized gold nanoparticles in imaging and therapy. Curr Med Chem 2011; 18 (14): 20862102.Google Scholar
12. Giljohann, D A, Seferos, D S, Daniel, W L, Massich, M D, Patel, P C, Mirkin, C A. Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl 2010; 49 (19): 32803294.Google Scholar
13. Chow, J C L, Leung, M K K, Fahey, S, Chithrani, D B, Jaffray, D A. Monte Carlo simulation on low-energy electrons from gold nanoparticle in radiotherapy. Phys Med Biol 2012; 57 (11): 33233331.Google Scholar
14. Ricketts, K, Castoldi, A, Guazzoni, C et al. A 3D in vitro cancer model as a platform for nanoparticle uptake and imaging investigations. Phys Med Biol 2012; 57: 55435555.Google Scholar
15. Morris, M C. ‘Cancer et nanotechnologie: Innovation en diagnostic, vectorisation et thérapeutique’, Rayonnement du CNRS n° 58 printemps 2012; 47–57.Google Scholar
16. Agostinelli, S, Allison, J, Amako, K et al. Geant4-a simulation toolkit. Nucl Instrum Methods Phys Res A 2003; 506: 250303.Google Scholar
17. Allison, J, Amako, K, Apostolakis, J et al. Geant4 developments and applications. IEEE Trans Nucl Sci 2006; 53: 270278.Google Scholar
18. Chauvie, S, Francis, Z, Guatelli, S et al. Geant4 physics processes for microdosimetry simulation: design foundation and implementation of the first set of models. IEEE Trans Nucl Sci 2007; 54 (6): 26192628.Google Scholar
19. Pandola, L et al. Beam interactions with materials and atoms. Nucl Instrum Methods Phys Res B 2015; 350: 4148.Google Scholar
20. De Napoli, M, Agodi, C, Battistoni, G et al. Carbon fragmentation measurements and validation of the Geant4 nuclear reaction models for hadrontherapy. Phys Med Biol 2012; 57 (22): 76517671.Google Scholar
21. Carmeliet, P, Jain, R K. Angiogenesis in cancer and other diseases. Nature 2000; 407 (6801): 249257.Google Scholar
22. Thakor, A S, Gambhir, S S. Nano oncology: the future of cancer diagnosis and therapy. CA Cancer J Clin 2013; 63: 395--418.Google Scholar
23. Walzlein, C, Scifoni, E, Kramer, M, Durante, M. Simulations of dose enhancement for heavy atom nanoparticles irradiated by protons. Phys Med Biol 2014; 59: 14411458.Google Scholar
24. Porcel, E, Liehn, S, Remita, H et al. Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology 2010; 21: 085103 (7pp).Google Scholar
25. Lin, Y, McMahon, S J, Scarpelli, M, Paganet, H, Schuemann, J. Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation. Phys Med Biol 2014; 59: 76757689.Google Scholar