Article contents
Dosimetric study of three-dimensional conformal radiotherapy, electronic compensator technique, intensity-modulated radiation therapy and volumetric-modulated arc therapy in whole breast irradiation†
Published online by Cambridge University Press: 09 May 2017
Abstract
Whole breast irradiation is an essential treatment after breast-conserving surgery (BCS). However, there are some adverse effects from inhomogeneity and dose to adjacent normal tissues.
Aim of this study was to compare dosimetry among standard technique, three-dimensional conformal radiotherapy (3D-CRT), and advanced techniques, electronic compensator (ECOMP), inverse intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT).
Whole breast irradiation treatment plans of patients who had underwent BCS and whole breast irradiation were re-planned with all four techniques. Clinical target volume was contoured according to the Radiation Therapy Oncology Group atlas for breast only in patients who had negative node or ductal carcinoma in situ and breast with chest wall for patients with positive node. Planning target volume was non-uniformly expanded. Dose prescription was 50 Gy in 25 fractions with 6 MV photon energy.
In total, 25 patients underwent whole breast irradiation with computed tomography simulation from November 2013 to November 2014 were included. Six patients with positive nodes were re-planned for breast with chest wall irradiation and 19 patients with negative nodes were re-planned for breast only irradiation. Primary outcome, radical dose homogeneity index (HI) of 3D-CRT, ECOMP, IMRT and VMAT were 0·865, 0·889, 0·890 and 0·866, respectively. ECOMP and IMRT showed significant higher HI than 3D-CRT (p-value<0·001). Secondary outcome, conformity index (CI) of advanced technique were significantly better than 3D-CRT. Lung V20, mean ipsilateral lung dose (MILD), mean heart dose (MHD), heart V25, heart V30 of advanced techniques were also lower than 3D-CRT. ECOMP had better mean lung dose (MLD), mean contralateral lung dose (MCLD) and mean contralateral breast dose (MCBD) when compared with 3D-CRT. Monitor units of advanced techniques were significantly higher than 3D-CRT.
HI of ECOMP and IMRT were significantly higher than 3D-CRT technique. All advanced techniques showed statistically better in CI. Lung V20, MILD, heart V25 and heart V30 of advanced techniques were lower than 3D-CRT. However, only ECOMP showed decreased MLD, MHD, MCLD and MCBD when compared with 3D-CRT.
Keywords
- Type
- Original Articles
- Information
- Copyright
- © Cambridge University Press 2017
Footnotes
Presentation at a conference; 2015 Breast Cancer Symposium, San Francisco, CA, USA.
References
- 4
- Cited by