Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T02:57:49.175Z Has data issue: false hasContentIssue false

The Zakharov–Kuznetsov equation for nonlinear ion-acoustic waves

Published online by Cambridge University Press:  13 March 2009

K. Murawski
Affiliation:
Department of Mathematical Sciences, University of St Andrews, Fife, KY16 9SS, Scotland
P. M. Edwin
Affiliation:
Department of Mathematical Sciences, University of St Andrews, Fife, KY16 9SS, Scotland

Abstract

The Zakharov-Kuznetsov equation is used to describe ion-acoustic wave propagation in a magnetic environment. An initial-value problem is solved for this equation on the basis of a numerical method that uses the fast-Fourier-transform technique for calculating space derivatives and a fourth-order Runge-Kutta method for the time scheme. Numerical simulations show that the disturbed flat (planar) solitary waves can break up into more robust cylindrical ones. Interactions between these two types of wave, and recurrence phenomena, are also studied.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Das, K. P. & Verheest, F. 1989 J. Plasma Phys. 41, 139.CrossRefGoogle Scholar
Fermi, E., Pasta, J. R. & Ulam, S. 1955 Los Alamos Scientific Laboratory Report LA-1940, 05.Google Scholar
Fornberg, B. & Whitham, G. B. 1978 Phil. Trans. R. Soc. Lond. A 289, 373.Google Scholar
Frycz, P. & Infeld, E. 1989 a J. Plasma Phys. 41, 441.CrossRefGoogle Scholar
Frycz, P. & Infeld, E. 1989 b Phys. Rev. Lett. 63, 384.CrossRefGoogle Scholar
Frycz, P. & Infeld, E. 1990 Phys. Rev. A 41, 3375.CrossRefGoogle Scholar
Infeld, E. 1985 J. Plasma Phys. 33, 171.Google Scholar
Infeld, E. & Frycz, P. 1987 J. Plasma Phys. 37, 97.CrossRefGoogle Scholar
Infeld, E. & Frycz, P. 1991 Physica D 52, 129.Google Scholar
Infeld, E. & Rowlands, G. 1990 Nonlinear waves, Solitons and Chaos. Cambridge University Press.Google Scholar
Iwasaki, H., Toh, S. & Kawahara, T. 1990 Physica D 43, 293.Google Scholar
Kuznetsov, E. A., Rubenchik, A. M. & Zakharov, V. E. 1986 Phys. Rep. 142, 103.Google Scholar
Laedke, E. W. & Spatschek, K. H. 1982 a J. Plasma Phys. 28, 469.Google Scholar
Laedke, E. W. & Spatschek, K. H. 1982 b Phys. Fluids 25, 985.Google Scholar
Murawski, K. 1991 Acta Phys. Polon. A (to appear).Google Scholar
Nouri, F. Z. & Sloan, D. M. 1989 J. Comp. Phys. 83, 324.Google Scholar
Ott, E. 1971 Phys. Fluids 14, 748.CrossRefGoogle Scholar
Ott, E. & Sudan, R. N. 1969 Phys. Fluids 12, 2388.CrossRefGoogle Scholar
Ott, E. & Sudan, R. N. 1970 Phys. Fluids 13, 1432.CrossRefGoogle Scholar
Pathria, D. & Morris, J. L. 1990 J. Comp. Phys. 87, 108.Google Scholar
Shivamoggi, B. K. 1989 J. Plasma Phys. 41, 83.CrossRefGoogle Scholar
Spatschek, K. H., Heiermann, P., Laedke, E. W., Naulin, V. & Pietsch, H. 1991 Coherent Structures (ed. M. Peyrard & M. Remoissenet). Springer Lecture Notes in Physics, vol. 393.Google Scholar
Zabusky, N. J. & Kruskal, M. D. 1965 Phys. Rev. Lett. 15, 240.Google Scholar
Zakharov, V. E. & Kuznetsov, E. A. 1974 Soviet Phys. JETP 39, 285.Google Scholar