Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T02:20:35.411Z Has data issue: false hasContentIssue false

Water-bag stability theory for planar bounded plasmas with counter-streaming injection. Part 1. The neutralized diode

Published online by Cambridge University Press:  13 March 2009

K. M. Hu
Affiliation:
Nuclear Engineering Department, Pennsylvania State University
E. H. Klevans
Affiliation:
Nuclear Engineering Department, Pennsylvania State University

Abstract

The stability of a bounded, homogeneous, neutralized plasma with counter- streaming electron beams is analysed. A water-bag model is used to describe the electron distribution in velocity space, so that finite beam temperature and a background plasma are included in the theory. For boundary conditions, the absorber– source wall (the diode boundary) and the reflecting wall are considered. For the former, growth-rate calculations indicate that the instability is a combination of charge bunching (counter-streaming) and diode circuit effect. As the diode length increases, the growth rate of all modes in the system approaches the maximum growth rate. For the reflecting wall, as the length increases, the maximum growth rate transfers to higher and higher order modes with shorter wavelength, while the growth rate of the lower-order modes goes to zero.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bertrand, P., Doremus, J. P., Baumann, G. & Feix, M. R. 1972 Phys. Fluids, 15, 1275.CrossRefGoogle Scholar
Dobrowalny, M., Englemann, F. & Sestero, A. 1969 Z. Noturforsch. A 249, 1235.CrossRefGoogle Scholar
Dolan, T. J., Verdeyen, J. T., Meeker, D. S. & Cherrington, B. E. 1972 J. Appl. Phys. 43, 1590.CrossRefGoogle Scholar
Elmore, W. C., Tuck, S. L. & Watson, K. M. 1959 Phys. Fluids, 2, 239.CrossRefGoogle Scholar
Faulkner, J. E. & Wane, A. A. 1969 J. Appl. Phys. 40, 366.CrossRefGoogle Scholar
Frey, J. & Birdsall, C. K. 1965 J. Appl. Phys. 36, 2962.CrossRefGoogle Scholar
Hirsch, R. L. 1968 Phys. Fluids, 17, 2486.CrossRefGoogle Scholar
Hu, K. M. 1974 Ph.D. thesis, Pennsylvania State University.Google Scholar
Jackson, J. D. 1960 J. Nucl. Energy, C 1, 171.CrossRefGoogle Scholar
Meeker, D. J., Verdeyen, J. T. & Cherrington, B. E. 1973 J. Appl. Phys. 44, 5347.CrossRefGoogle Scholar
Montgomery, D. & Gorman, D. 1962 Phys. Fluids, 5, 947.CrossRefGoogle Scholar
Pierce, S.R. 1944 J. Appl. Phys. 15, 721.CrossRefGoogle Scholar
Swanson, D. A., Cherrigton, B. E. & Verdeyen, S. T. 1973 Phys. Fluids, 16, 1939.CrossRefGoogle Scholar