Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T06:49:57.627Z Has data issue: false hasContentIssue false

Ultra-cold plasmas: a paradigm for strongly coupled and classical electron fluids

Published online by Cambridge University Press:  15 April 2009

CLAUDE DEUTSCH
Affiliation:
LPGP (UMR-CNRS 8578), Bât. 210, UPS, 91405 Orsay, France
GUENTER ZWICKNAGEL
Affiliation:
Institut fuer Theoretische Physik II, Staudtstr. 7, 91058 Erlangen, Germany
ANTOINE BRET
Affiliation:
ETSI Industriales, Universidad de Castilla, La Mancha, 13071 Ciudad Real, Spain

Abstract

Ultra-cold plasmas obtained by ionization of atomic Rydberg states are qualified as classical and strongly coupled electron fluids. They are shown to share several common trends with ultra-cold electron flows used for ion-beam cooling. They exhibit specific stopping behaviour to charged particle beams, which may be used for diagnostic purposes. Ultra-cold plasmas are easily strongly magnetized. Then, one expects a strongly anisotropic behaviour of low ion velocity slowing down when the target electron cyclotron radius becomes smaller than the corresponding Debye length.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Vitrant, G., Raimond, J. M., Gross, M. and Haroche, S. 1982 Rydberg to plasma evolution in a dense gas of very excited atoms. J. Phys. B 15, L4955.Google Scholar
[2]Killian, T. C., Kulin, S., Bergeson, S. D., Orozec, L. A. and Rolston, S. L. 1999 Creation of an ultracold neutral plasma. Phys. Rev. Lett. 83, 47764779.CrossRefGoogle Scholar
[3]Kulin, S., Killian, T. C., Bergeson, S. D. and Rolston, S. L. 2000 Plasma oscillations and expansion of an ultracold plasma. Phys. Rev. Lett. 85, 318321.CrossRefGoogle Scholar
[4]Killian, T. C., Lin, M., Kulin, S., Bergeson, S. D. and Rolston, S. L. 2001 Formation of Rydberg atoms in an expanding ultracold neutral plasma. Phys. Rev. Lett. 86, 37593762.CrossRefGoogle Scholar
[5]Robinson, M. P., Laburthe Tolra, N., Noel, M. W., Gallagher, T. F. and Pillet, P. 2000 Spontaneous evolution of Rydberg atoms into an ultracold plasma. Phys. Rev. Lett. 85, 44664469.CrossRefGoogle ScholarPubMed
[6]Killian, T. C., Ashoka, V. S., Gupta, P., Caha, S., Nagel, S. B., Simien, C. E., Kulin, S., Rolston, S. L. and Bergeson, S. D. 2003 Ultracold neutral plasmas:Recent experiments and new prospects. J. Phys. A 36, 60776085.Google Scholar
[7]Keller, M. L., Anderson, L. W. and Lin Chun, C. 2000 Electron-impact ionization crose-section measurements out of the 5 2P excited state of Rubidium. Phys. Rev. Lett. 85, 33533356.CrossRefGoogle Scholar
[8]Li, W., Tanner, P. J. and Gallagher, T. F. 2005 Dipole-dipole excitation and ionization in an ultracold gas of Rydberg atoms. Phys. Rev. Lett. 94, 173001.CrossRefGoogle Scholar
[9]Comparat, D., Vogt, T., Nahzam, N., Mudrich, M. and Pillet, P. 2005 Star cluster dynamics in a laboratory: Electrons in an ultracold plasma. Mon. Not. R. Astron. Soc. 361, 12271242.CrossRefGoogle Scholar
[10]Gouedard, C. and Deutsch, C. 1978 Dense electron-gas response at any degeneracy. J. Math. Phys. 19, 3240.CrossRefGoogle Scholar
[11]Zwicknagel, G. 1994 Energie Verlust Schwerer Ionen in Stark Gekoppelten Plasmen.Ph.D thesis. Theoretische Physik II, University of Erlangen.Google Scholar
[12]Deutsch, C. 1977 Nodal expansion in a real matter plasma. Phys. Lett. A 30, 317319. Deutsch, C., Furutani, Y. and Gombert, M. M. 1981 Nodal expansions for strongly coupled classical plasmas. Phys. Rep. 69, 86–193.CrossRefGoogle Scholar
[13]Stringfellow, G. S., DeWitt, H. E. and Slattery, W. L. 1990 Equation of state for the one-component-plasma derived from precise Monte-Carlo simulations. Phys. Rev. A 41, 11051111.CrossRefGoogle Scholar
[14]Bonitz, M., Zelener, B., Zelener, B. V., Manykin, E. A. N., Filinov, V. S. and Fortov, V. E. 2004 Thermodynamics and correlation functions of an ultracold nonideal Rydberg plasma. JETP 98, 719727.CrossRefGoogle Scholar
[15]Shumway, J. and Ceperley, D. M. 2000 Path integral Monte-Carlo simulations for fermion systems: Pairing in the electron-hole plasma. J. Phys. IV Fr. 10, 316.Google Scholar
[16]Zwicknagel, G., Toepffer, C. and Reinhard, P. G. 1999 Stopping of heavy ions in plasmas at strong coupling. Phys. Rep. 309, 117208; Erratum 1999 Phys. Rep. 314, 671.CrossRefGoogle Scholar
[17]Zwicknagel, G. 2001 Nonlinear energy loss of heavy ions in plasma. Nucl. Instrum. Methods B 197, 2238.CrossRefGoogle Scholar
[18]Robichaux, F. and Hanson, J. D. 2002 Simulation of the expansion of an ultracold plasma. Phys. Rev. Lett. 88, 055002.CrossRefGoogle Scholar
[19]Bret, A. and Deutsch, C. 1993 Dielectric response function and stopping power of a two-dimansional electron-gas. Phys. Rev. E 48, 29943002.Google ScholarPubMed
[20]Nersisyan, H. B., Toepffer, C. and Zwicknagel, G. 2007 Interaction Between Charged Particles in a Magnetic Field. Springer-Verlag, Berlin-Heidelberg.Google Scholar
[21]Dufty, J. M. and Berkovsky, M. 1995 Electronic stopping of ions in the low velocity limit. Nucl. Instrum. Methods Phys. Res. B 96, 626632.CrossRefGoogle Scholar
[22] A fundamental restriction on the relations (17) arises a priori from the strong inequality M p/m ≫ 1 between ion projectile and electron masses. However, Dufty and Berkovsky [21] demonstrated how it can be considerably relaxed.Google Scholar
[23]Marchetti, M. C., Kikpatrick, T. R. and Dorfman, J. R. 1987 Hydrodynamic theory of electron transport in a strong magnetic field. J. Statist. Phys. 46, 679708; Erratum 1987 J. Stat. Phys. 49, 871–872. Marchetti, M. C., Kikpatrick, T. R. and Dorfman, J. R. 1984 Anomalous diffusion of charged particles in a strong magnetic field. Phys. Rev. A29, 2960–2962.CrossRefGoogle Scholar
[24]Cohen, J. S. and Suttorp, L. G. 1984 The effect of dynamical screening on self-diffusion in a dense magnetized plasma. Physica 126A, 308327.CrossRefGoogle Scholar
[25] The extension to a more general ion beam–plasma system requires us to replace the OCP by a binary ionic mixture (BIM) modelization.Google Scholar
[26]Goldston, R. J. and Rutherford, P. H. 1995 Introduction to Plasma Physics. Institute of Physics, Philadelphia, p. 318.CrossRefGoogle Scholar
[27]Montgomery, D., Liu, C. S. and Vahala, G. 1972 Three-dimensional plasma diffusion in a very strong magnetic field. Phys. Fluids 15, 815819.CrossRefGoogle Scholar