Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-29T04:07:13.187Z Has data issue: false hasContentIssue false

Two-stream whistler-pumped free-electron laser

Published online by Cambridge University Press:  25 September 2014

S. Saviz*
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran 14665-678, Iran
S. Jafari
Affiliation:
Department of Physics, University of Guilan, Rasht 41335-1914, Iran
*
Email address for correspondence: [email protected]

Abstract

The theory for the two-stream free-electron laser with the whistler wave as a slow electromagnetic wave wiggler is studied theoretically. The results show that for small values of plasma density, there are seven groups of orbits and the plasma density enhancement leads to increase in the number of trajectories. Also, increasing the plasma density causes growth in the axial velocity for groups (1–4) of orbits and a reduction for groups (6–7). It is shown that for groups (6–7), the effect of plasma is to increase the gain, and for groups (1–4) the effect of plasma is to decrease the gain. For group (1) the effect of plasma is to decrease the maximum frequency and for group (3) it is to increase the maximum frequency.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andriyash, I. A., Humieres, E. D., Tikhonchuk, T. and Balcu, Ph. 2012 Phys. Rev. Lett. 109, 244802.Google Scholar
Bekefi, G. and Jacobs, K. D. 1982 J. Appl. Phys. 53, 4113.CrossRefGoogle Scholar
Chen, K. R., Dawson, J. M., Lin, A. T. and Katsouleas, T. 1991 Phys. Fluid B 3 (5), 1270.CrossRefGoogle Scholar
Cross, A. W., Ginzburg, N. S., He, W., Jaroszynski, D. A., Peskov, N. Yu., Phelps, A. D. R. and Whyte, C. G. 1998 A 32-GHz Bragg free-electron maser (FEM) oscillator with axial guide magnetic field. Nucl. Inst. Methods Phys. Res. A 407, 181186.CrossRefGoogle Scholar
Freund, H. P. and Antonsen, J. M. 1996 Principles of Free-Electron Lasers. London: Chapman and Hall.Google Scholar
Freund, H. P., Kehs, R. A. and Granatstein, V. L. 1986 Phys. Rev. A 34, 2007.Google Scholar
Govil, R., Leemans, W. P., Backhaus, E. Yu. and Wurtele, J. S. 1999 Phys. Rev. Lett. 83, 3202.CrossRefGoogle Scholar
Hao, B., Ding, W. J., Sheng, Z. M., Ren, C. and Zhang, J. 2009a Phys. Rev. E 80, 066402.Google Scholar
Hao, B., Sheng, Z. M., Ren, C. and Zhang, J. 2009b Phys. Rev. E 79, 046409.Google Scholar
Jafarinia, F., Jafari, S. and Mehdian, H. 2013 Phys. Plasmas 20, 043106.Google Scholar
Joshi, C., Katsouleas, T., Dawson, J. M., Yan, Y. T. and Slater, J. M. 1987 IEEE J. Quantum Electron. QE23, 1571.Google Scholar
Kaganovich, I. D., Startsev, E. A., Sefkow, A. B. and Davidson, R. C. 2007 Phys. Rev. Lett. 99, 235002.Google Scholar
Konoplev, I. V., McGrane, P., He, W., Cross, A. W., Phelps, A. D. R., Whyte, C. G., Ronald, K and Robertson, C. W. 2006 Experimental study of co-axial free-electron maser based on two-dimensional distributed feedback. Phys. Rev. Lett. 96, Art. No. 035002.CrossRefGoogle Scholar
Kulish, V. V., Kuleshov, S. A. and Lysenko, A. V. 1993 Int. J. Infrared Millim. Waves 14, 3.Google Scholar
Kulish, V. V., Lysenko, A. V. and Savechenko, V. I. 2003 Int. J. Infrared Millim. Waves 24, 2.Google Scholar
Kulish, V. V., Lysenko, A. V., Savechenko, V. I. and Majomikov, I. G. 2005 Laser Phys. 15, 12.Google Scholar
Liu, Y., Qian, B. and Li, C. 1994 Phys. Plasmas 1, 4089.Google Scholar
McNeil, B. W. J., Robb, G. R. M. and Poole, M. W. 2004 Phys. Rev. E 70, 035501.Google Scholar
Mehdian, H. and Saviz, S. 2008 Phys. Plasmas 15, 093103.Google Scholar
Pant, K. K. and Tripathi, V. K. 1994 IEEE Trans. Plasma Sci. 22, 217.Google Scholar
Petrillo, V. and Maroli, C. 2000 Phys. Rev. E 62, 8612.Google Scholar
Saviz, S., Mehdian, H., Aghamir, F., Ghorannevis, M. and Ashkarran, A. A. 2011 J. Plasma Phys. 77 (6), 765.CrossRefGoogle Scholar
Saviz, S., Rezaei, Z. and Aghamir, F. M. 2012 Phys. Plasmas 19, 023115.Google Scholar
Seo, Y. and Choi, E. H. 1997 IEEE Trans. Plasma Sci. 25, 360.Google Scholar
Seo, Y. and Park, I. H. 1997 Phys. Plasmas 4, 4176.Google Scholar
Serbeto, A. and Alves, M. V. 1993 IEEE Trans. Plasma Sci. 21, 243.Google Scholar
Sharma, A. and Tripathi, V. K. 1993 Phys. Fluids B 5, 171.Google Scholar
Tripathi, V. K. and Liu, C. S. 1990 IEEE Trans. Plasma Sci. 18, 466.CrossRefGoogle Scholar
Tsui, K. H. and Serbeto, A. 1998 Phys. Rev. E 58, 5013.Google Scholar
Yin, H., Cross, A. W., He, W., Phelps, A. D. R. and Ronald, K. 2004 Pseudospark experiments: Cherenkov interaction and electron beam post-acceleration. IEEE Trans. Plasma Sci. (2nd Special Edn. on Pseudospark Physics and Applications) PS32, 233239.Google Scholar
Yin, H., Cross, A. W., He, W., Phelps, A. D. R., Ronald, K., Bowes, D. and Robertson, C. W. 2009 Millimeter wave generation from a pseudospark-sourced electron beam. Phys. Plasmas 16, 063105.Google Scholar
Whyte, C. G., Jaroszynski, D. A., Cross, A. W., He, W., Ronald, K., Young, A. and Phelps, A. D. R. 2000 Free electron maser amplifier experiments. Nucl. Instrum. Methods Phys. Res. A 445, 272275.CrossRefGoogle Scholar