Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T18:51:20.099Z Has data issue: false hasContentIssue false

Two-fluid tokamak equilibria with reversed magnetic shear and sheared flow

Published online by Cambridge University Press:  01 June 2007

G. POULIPOULIS
Affiliation:
University of Ioannina, Association Euratom – Hellenic Republic, Section of Theoretical Physics, GR 451 10 Ioannina, Greece ([email protected]; [email protected])
G. N. THROUMOULOPOULOS
Affiliation:
University of Ioannina, Association Euratom – Hellenic Republic, Section of Theoretical Physics, GR 451 10 Ioannina, Greece ([email protected]; [email protected])
H. TASSO
Affiliation:
Max-Planck-Institut für Plasmaphysik, Euratom Association, D-85748 Garching, Germany ([email protected])

Abstract

The aim of the present work is to investigate tokamak equilibria with reversed magnetic shear and sheared flow, which may play a role in the formation of internal transport barriers (ITBs), within the framework of the two-fluid model in cylindrical geometry. The study is based on exact self-consistent solutions by means of which the impact of the magnetic shear, s, and the ‘toroidal’ (axial) and ‘poloidal’ (azimuthal) ion velocity components, viz and viθ, on the radial electric field, Er, its shear, |dEr/dr|, and the shear of the E×B velocity, ωE×B≡|d/dr(E× B/B2)|, is examined. For a wide parametric regime of experimental concern it turns out that the contributions of the viz, viθ and pressure gradient (∇ Pi) terms to Er, |Er′| and ωE×B are of the same order of magnitude. The contribution of the ∇ Pi term is missing in the framework of magnetohydrodynamics (MHD) (G. Poulipoulis et al. 2004 Plasma Phys. Control. Fusion46, 639). The impact of s on ωE×B through the ∇ Pi term is stronger than that through the velocity terms; in particular for constant Bz the ion pressure gradient contribution to ωE×B at the point where dEr/dr=0 scales as (1−s)(2−s), whereas the ion flow contributions to ωE×B scale as (1−s). The results indicate that, like MHD, the magnetic shear and the sheared toroidal and poloidal velocities act synergetically in producing electric fields and therefore ωE×B profiles compatible with the ones observed in discharges with ITBs; owing to the ∇ Pi term, however, the impact of s on Er, |Er′| and ωE×B is stronger than that in MHD.

Type
Papers
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Gruber, O. et al. 2000 Plasma Phys. Control. Fusion 44, A117.CrossRefGoogle Scholar
[2]Zohm, H. et al. 2003 Nucl. Fusion 43, 1570.CrossRefGoogle Scholar
[3]Ide, S., Fujita, T., Naito, O. and Seki, M. 1996 Plasma Phys. Control. Fusion 38, 1645.CrossRefGoogle Scholar
[4]Litaudon, X. et al. 1996 Plasma Phys. Control. Fusion 38, 1603.CrossRefGoogle Scholar
[5]Litaudon, X. et al. 2003 Nucl. Fusion 43, 565.CrossRefGoogle Scholar
[6]Strait, E. J. et al. 1995 Phys. Rev. Lett. 75, 4421.CrossRefGoogle Scholar
[7]Conway, G. D. et al. 2001 Plasma Phys. Control. Fusion 43, 1239.CrossRefGoogle Scholar
[8]Levinton, F. M. et al. 1995 Phys. Rev. Lett. 75, 4417.Google Scholar
[9]Tala, T. J. J., Heikkinen, J. A., Parail, V. V., Baranov, Yu. F. and Karttunen, S. J. 2001 Plasma Phys. Control. Fusion 43, 507.CrossRefGoogle Scholar
[10]Candy, R. and Waltz, R. E. 2003 Phys. Rev. Lett. 91, 045001.CrossRefGoogle Scholar
[11]Connor, J. W. et al. 2004 Nucl. Fusion 44, R1.CrossRefGoogle Scholar
[12]Hahm, T. S. and Burrell, K. H. 1995 Phys. Plasmas 2, 1648.CrossRefGoogle Scholar
[13]Waltz, R. E., Staebler, G. M., Dorland, W., Hammett, G. W., Kotschenreuther, M., and Konings, J. A. 1997 Phys. Plasmas 2, 2482.CrossRefGoogle Scholar
[14]Crisanti, F. et al. 2001 Nucl. Fusion 41, 883.Google Scholar
[15]Crobé, K. et al. 2005 Phys. Rev. Lett. 95, 155 003.CrossRefGoogle Scholar
[16]Bell, R. E., Levinton, F. M., Batha, S. H., Synakowski, E. J. and Zarnstorff, M. C. 1998 Phys. Rev. Lett. 7, 1429.CrossRefGoogle Scholar
[17]Bell, M. G. et al. 1999 Plasma Phys. Control. Fusion 41, A719.CrossRefGoogle Scholar
[18]Poulipoulis, G., Throumoulopoulos, G. N. and Tasso, H. 2004 Plasma Phys. Control. Fusion 46, 639.CrossRefGoogle Scholar
[19]Wolf, R. C. 2003 Plasma Phys. Control. Fusion 45, R1.CrossRefGoogle Scholar
[20]Koide, Y. and the JT-60 Team. 1997 Phys. Plasmas 4, 1623.CrossRefGoogle Scholar
[21]Throumoulopoulos, G. N. and Tasso, H. 1997 Phys. Plasmas 4, 1492.CrossRefGoogle Scholar
[22]Tasso, H. and Throumoulopoulos, G. N. 1998 Phys. Plasmas 5, 2378.CrossRefGoogle Scholar
[23] The programme is available upon request to the first author (G.P.).Google Scholar
[24]Wolfram Research 1999 Mathematica, version 4.1. In: The Mathematica Book. 4th edn (Wolfram, S.). Champaign, IL: Wolfram Media/Cambridge: Cambridge University Press.Google Scholar
[25]Wolf, R. C. et al. 2000 Phys. Plasmas 7, 1839.CrossRefGoogle Scholar
[26]Kerner, W. and Tasso, H. 1982 Plasma Physics 24, 97.CrossRefGoogle Scholar
[27]Joffrin, E. et al. 2002 Plasma Phys. Control. Fusion 44, 1739.CrossRefGoogle Scholar
[28]Meister, H., Kallenbach, A., Peeters, A. G., Kendl, A., Hobirk, J., Pinches, S. D. and ASDEX Upgrade Team. 2001 Nuclear Fusion 41, 1633.CrossRefGoogle Scholar
[29]Lortz, D. and Zeiler, A. 1994 Phys. Plasmas 1, 670.CrossRefGoogle Scholar
[30]Zhu, P., Horton, W. and Sugama, H. 1999 Phys. Plasmas 6, 2503.CrossRefGoogle Scholar