Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T06:49:42.339Z Has data issue: false hasContentIssue false

Two-dimensional magnetohydrodynamic turbulence: cylindrical, non-dissipative model

Published online by Cambridge University Press:  13 March 2009

David Montgomery
Affiliation:
Department of Physics, College of William and Mary, Williamburg, Virginia 23185
George Vahala
Affiliation:
Department of Physics, College of William and Mary, Williamburg, Virginia 23185

Abstract

Incompressible magnetohydrodynamic turbulence is treated in the presence of cylindrical boundaries which are perfectly conducting and rigidly smooth. The model treated is non-dissipative and two-dimensional, the variation of all quantities in the axial direction beingignored. Equilibrium Gibbs ensemble predictions are explored assuming the constraint of constant axial current (appropriate to tokamak operation). No small-amplitude approximations are made. The expectation value of the turbulent kinetic energy is found to approach zero for the state of maximum mean-square vector potential to energy ratio. These are the only states for which large velocity fluctuations are not expected.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Frisch, U., Pouquet, A., Leorat, J. & Mazure, A. 1975 J. Fluid Mech. 68, 769.CrossRefGoogle Scholar
Fyfe, D., Joyce, G. & Montgomery, D. 1977 J. Plasma Phys. 17, 317.CrossRefGoogle Scholar
Fyfe, D. & Montgomery, D. 1976 J. Plasma Phys. 16, 181.CrossRefGoogle Scholar
Fyfe, D., Montgomery, D. & Joyce, G. 1977 J. Plasma Phys. 17, 369.CrossRefGoogle Scholar
Herring, J. R., Orszag, S. A., Kraichnan, R. H. & Fox, D. G. 1974 J. Fluid Mech. 66, 417.CrossRefGoogle Scholar
Kraichnan, R. H. 1967 Phys. Fluids, 10, 1417.CrossRefGoogle Scholar
Montgomery, D., Turner, L. & Vahala, G. 1978 Phys. Fluids. 21, 316.CrossRefGoogle Scholar
Newcomb, W. A. 1960 Ann. Phys. (N.Y.), 10, 232.CrossRefGoogle Scholar
Orszag, S. A. 1971 Stud. Appi. Math. 50, 293.CrossRefGoogle Scholar
Patterson, G. S. & Orszag, S. A. 1971 Phys. Fluids, 14, 2538.CrossRefGoogle Scholar
Pouquet, A. 1978 J. Fluid Mech. 88, 1.CrossRefGoogle Scholar
Pouquet, A., Frisch, U. & Leorat, J. 1976 J. Fluid Mech. 77, 321.CrossRefGoogle Scholar
Pouquet, A. & Patterson, G. S. 1978 J. Fluid Mech. 85, 305.CrossRefGoogle Scholar
Reynolds, O. 1883 Phil. Trans. Roy. Soc. 174, 935.Google Scholar
Reynolds, O. 1886 Phil. Trans. Roy. Soc. 177, 157.Google Scholar