Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-23T18:29:18.736Z Has data issue: false hasContentIssue false

Two-dimensional hydrodynamic models of laser-produced plasmas

Published online by Cambridge University Press:  13 March 2009

G. J. Pert
Affiliation:
Department of Physics, University of York, York YO1 5DD, U.K.

Abstract

Analytic modelling of laser-produced plasmas has generally been restricted to one-dimensional flow. Multi-dimensional hydrodynamic approximations are available, and are explored in this paper. Two configurations are examined. The explosive mode in which the entire body of material is uniformly heated is treated by the self-similar form, and the aspect ratio of the resulting expansion is determined. Ablative flows can be approximated by the hybrid model, and the self-regulating flow from a solid target can be calculated in this way.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afanasev, I. V., Krol, M. V., Krokhin, O. N. & Nemchinov, I. V. 1966 Appl. Maths and Mech. 30, 1218.CrossRefGoogle Scholar
Babuel-Peyrissac, J. P., Fauquignon, C. & Floux, F. 1969 Phys. Lett. 30A, 290.CrossRefGoogle Scholar
Bobin, J. L. 1971 Phys. Fluids, 14, 2341.CrossRefGoogle Scholar
Caruso, A., Bertotti, B. & Giupponi, P. 1966 Nuovo Cim. 45B, 176.CrossRefGoogle Scholar
Caruso, A. & Gratton, R. 1968 Plasma Phys. 10, 867.Google Scholar
Caruso, A. & Gratton, R. 1969 Plasma Phys. 11, 839.CrossRefGoogle Scholar
Dawson, J. M. 1964 Phys. Fluids, 7, 981.CrossRefGoogle Scholar
Dawson, J. M., Kaw, P. & Green, B. 1969 Phys. Fluids, 12, 875.CrossRefGoogle Scholar
Fauquignon, C. & Floux, F. 1970 Phys. Fluids, 13, 386.CrossRefGoogle Scholar
Gitomer, S. J., Morse, R. L. & Newberger, B. S. 1977 Phys. Fluids, 20, 234.CrossRefGoogle Scholar
Haught, A. F. & Polk, D. H. 1970 Phys. Fluids, 13, 2824.Google Scholar
Hunter, J. H. & London, R. A. 1988 Lawrence Livermore Laboratory Report, UCRL 98388.Google Scholar
London, R. A. & Rosen, M. D. 1986 Phys. Fluids, 29, 3813.CrossRefGoogle Scholar
Max, C. E., McKee, C. F. & Mead, W. C. 1980 Phys. Fluids, 23, 1620.CrossRefGoogle Scholar
Nemchinov, I. V. 1964 Prikl. Mekh. Tekh. Fiz. 5, 18 (transl. by Sandia Corp.).Google Scholar
Nemchinov, I. V. 1965 Appl. Maths and Mech. 29, 143.CrossRefGoogle Scholar
Nemchinov, I. V. 1967 Appl. Maths and Mech. 31, 320.CrossRefGoogle Scholar
Pert, G. J. 1976 J. Phys. B 9, 3301.Google Scholar
Pert, G. J. 1980 J. Fluid Mech. 100, 257.CrossRefGoogle Scholar
Pert, G. J. 1983 J. Fluid Mech. 131, 401.CrossRefGoogle Scholar
Pert, G. J. 1986 a J. Plasma Phys. 35, 43.Google Scholar
Pert, G. J. 1986 b J. Plasma Phys. 36, 415.CrossRefGoogle Scholar
Pert, G. J. 1986 c J. Phys. (Paris), 47, C6-177.Google Scholar
Pert, G. J. 1987 Laser and Particle Beams, 5, 643.CrossRefGoogle Scholar
Pert, G. J. 1988 J. Plasma Phys. 39, 241.Google Scholar
Puell, H. 1970 Z. Naturforsch. 25a, 1837.Google Scholar