Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T19:48:08.691Z Has data issue: false hasContentIssue false

Turbulence evolution in MHD plasmas

Published online by Cambridge University Press:  21 February 2013

MARTINA WISNIEWSKI
Affiliation:
Lehrstuhl für Astronomie, Universität Würzburg, Emil-Fischer Str. 31, D-97074 Würzburg, Germany ([email protected])
RALF KISSMANN
Affiliation:
Institut für Astro- und Teilchenphysik, Universität Innsbruck, Innsbruck, Austria
FELIX SPANIER
Affiliation:
Lehrstuhl für Astronomie, Universität Würzburg, Emil-Fischer Str. 31, D-97074 Würzburg, Germany ([email protected])

Abstract

Turbulence in the interstellar medium has been an active field of research in the last decade. Numerical simulations are the tool of choice in most cases. However, while there are a number of simulations on the market, some questions have not been answered finally. In this paper, we examine the influence of compressible and incompressible driving on the evolution of turbulent spectra in a number of possible interstellar medium scenarios. We conclude that the driving has an influence not only on the ratio of compressible to incompressible component but also on the anisotropy of turbulence.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, J. W., Rickett, B. J. and Spangler, S. R. 1995 Electron density power spectrum in the local interstellar medium. Astrophys. J. 443, 209221.CrossRefGoogle Scholar
Beresnyak, A. and Lazarian, A. 2009 Comparison of spectral slopes of magnetohydrodynamic and hydrodynamic turbulence and measurements of alignment effects. Astrophys. J. 702, 11901198.CrossRefGoogle Scholar
Chandran, B. D. G. 2005 Weak compressible magnetohydrodynamic turbulence in the solar corona. Phys. Rev. Lett. 95 (26), 265004.CrossRefGoogle ScholarPubMed
Chandran, B. D. G. 2008 Weakly turbulent magnetohydrodynamic waves in compressible low-β plasmas. Phys. Rev. Lett. 101 (23), 235004.CrossRefGoogle ScholarPubMed
Chernyshov, A. A., Karelsky, K. V. and Petrosyan, A. S. 2007 Development of large eddy simulation for modeling of decaying compressible magnetohydrodynamic turbulence. Phys. Fluids 19 (5), 055106.CrossRefGoogle Scholar
Chernyshov, A. A., Karelsky, K. V. and Petrosyan, A. S. 2009 Validation of large eddy simulation method for study of flatness and skewness of decaying compressible magnetohydrodynamic turbulence. Theor. Comput. Fluid Dyn. 23, 451470.CrossRefGoogle Scholar
Chin, Y.-C. and Wentzel, D. G. 1972 Nonlinear dissipation of Alfvén waves. Astrophys. Space Sci. 16, 465477.CrossRefGoogle Scholar
Cho, J. and Lazarian, A. 2002 Compressible sub-Alfvénic MHD turbulence in low-β plasmas. Phys. Rev. Lett. 88 (24), 245001.CrossRefGoogle ScholarPubMed
Cho, J. and Lazarian, A. 2003 Compressible magnetohydrodynamic turbulence: mode coupling, scaling relations, anisotropy, viscosity-damped regime and astrophysical implications. Mon. Not. R. Astron. Soc. 345, 325339.CrossRefGoogle Scholar
Cho, J. and Vishniac, E. T. 2000 The anisotropy of magnetohydrodynamic Alfvénic turbulence. Astrophys. J. 539, 273282.CrossRefGoogle Scholar
Elmegreen, B. G. and Scalo, J. 2004 Interstellar turbulence I: observations and processes. Ann. Rev. Astron. Astrophys. 42, 211273.CrossRefGoogle Scholar
Federrath, C., Chabrier, G., Schober, J., Banerjee, R., Klessen, R. S. and Schleicher, D. R. G. 2011 Mach number dependence of turbulent magnetic field amplification: solenoidal versus compressive flows. Phys. Rev. Lett. 107 (11), 114504.CrossRefGoogle ScholarPubMed
Federrath, C., Klessen, R. S. and Schmidt, W. 2008 The density probability distribution in compressible isothermal turbulence: solenoidal versus compressive forcing. Astrophys. J. Lett. 688, L7982.CrossRefGoogle Scholar
Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt, W. and MacLow, M.-M. Low, M.-M. 2010 Comparing the statistics of interstellar turbulence in simulations and observations. Solenoidal versus compressive turbulence forcing. Astron. Astrophys. 512, A81.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Goldreich, P. and Sridhar, S. 1995 Toward a theory of interstellar turbulence. 2: strong alfvenic turbulence. Astrophys. J. 438, 763775.CrossRefGoogle Scholar
Grauer, R., Krug, J. and Marliani, C. 1994 Scaling of high-order structure functions in magnetohydrodynamic turbulence. Phys. Lett. A 195, 335338.CrossRefGoogle Scholar
Haverkorn, M., Katgert, P. and de Bruyn, A. G. 2004 Structure in the polarized galactic synchrotron emission, in particular ‘depolarization canals’. Astron. Astrophys. 427, 549559.CrossRefGoogle Scholar
Klessen, R. S. 2000 One-point probability distribution functions of supersonic turbulent flows in self-gravitating media. Astrophys. J. 535, 869886.CrossRefGoogle Scholar
Kolmogorov, A. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds' numbers. Akademiia Nauk SSSR Doklady 30, 301305.Google Scholar
Kowal, G., Lazarian, A. and Beresnyak, A. 2007 Density fluctuations in MHD turbulence: spectra, intermittency, and topology. Astrophys. J. 658, 423445.CrossRefGoogle Scholar
Kurganov, A. and Levy, D. 2000 A third-order semi-discrete central scheme for conservation laws and convection–diffusion equations. arXiv:math/0002133. Published on ArXiv only.CrossRefGoogle Scholar
Kuznetsov, E. A. 2001 Weak magnetohydrodynamic turbulence of a magnetized plasma. Sov. J. Exp. Theor. Phys. 93, 10521064.CrossRefGoogle Scholar
Lazar, M., Spanier, F. and Schlickeiser, R. 2003 Linear damping and energy dissipation of shear Alfvén waves in the interstellar medium. Astron. Astrophys. 410, 415424.CrossRefGoogle Scholar
Lazarian, A. and Pogosyan, D. 1997 Interstellar filaments and the statistics of galactic Hi. Astrophys. J. 491, 200.CrossRefGoogle Scholar
Lemaster, M. N. and Stone, J. M. 2009 Dissipation and heating in supersonic hydrodynamic and MHD turbulence. Astrophys. J. 691, 10921108.CrossRefGoogle Scholar
Lithwick, Y. and Goldreich, P. 2001 Compressible Magnetohydrodynamic Turbulence in Interstellar Plasmas. Astrophys. J. 562, 279296.CrossRefGoogle Scholar
Maron, J. and Goldreich, P. 2001 Simulations of incompressible magnetohydrodynamic turbulence. Astrophys. J. 554, 11751196.CrossRefGoogle Scholar
Padoan, P., Juvela, M., Kritsuk, A. and Norman, M. L. 2006 The power spectrum of supersonic turbulence in perseus. Astrophys. J. Lett. 653, L125–L128.CrossRefGoogle Scholar
Politano, H. and Pouquet, A. 1995 Model of intermittency in magnetohydrodynamic turbulence. Phys. Rev. E 52, 636641.Google ScholarPubMed
She, Z.-S. and Leveque, E. 1994 Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72, 336339.CrossRefGoogle ScholarPubMed
Shebalin, J. V., Matthaeus, W. H. and Montgomery, D. 1983 Anisotropy in MHD turbulence due to a mean magnetic field. J. Plasma Phys. 29, 525547.CrossRefGoogle Scholar
Skilling, J. 1975 Cosmic ray streaming. III - Self-consistent solutions. Mon. Not. R. Astron. Soc. 173, 255269.CrossRefGoogle Scholar
Spanier, F. and Schlickeiser, R. 2005 Damping and wave energy dissipation in the interstellar medium. II. Fast magnetosonic waves. Astron. Astrophys. 436, 916.CrossRefGoogle Scholar
Sridhar, S. and Goldreich, P. 1994 Toward a theory of interstellar turbulence. 1: weak Alfvenic turbulence. Astrophys. J. 432, 612621.CrossRefGoogle Scholar
Vainio, R. and Spanier, F. 2005 Evolution of Alfvén waves by three-wave interactions in super-Alfvénic shocks. Astron. Astrophys. 437, 18.CrossRefGoogle Scholar
Vestuto, J. G., Ostriker, E. C. and Stone, J. M. 2003 Spectral properties of compressible magnetohydrodynamic turbulence from numerical simulations. Astrophys. J. 590, 858873.CrossRefGoogle Scholar
von Weizsäcker, C. F. 1951 The evolution of galaxies and stars. Astrophys. J. 114, 165.CrossRefGoogle Scholar