Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T16:57:28.308Z Has data issue: false hasContentIssue false

Turbulence changes in laser enhanced laser induced plasmas

Published online by Cambridge University Press:  15 November 2010

D. L. WIGGINS
Affiliation:
Center for Plasma Science and Technology, Florida A & M University, Tallahassee, FL 32310, USA ([email protected])
C. T. RAYNOR
Affiliation:
Center for Plasma Science and Technology, Florida A & M University, Tallahassee, FL 32310, USA ([email protected])
J. A. JOHNSON III
Affiliation:
Center for Plasma Science and Technology, Florida A & M University, Tallahassee, FL 32310, USA ([email protected])

Abstract

A neodymium-doped yttrium aluminum garnet laser of wavelength 0.532 μm with the maximum energy of 900 mJ creates plasmas at a focal point in air in the path of a 1 kW continuous wave fiber laser of wavelength 1.08 μm. We find that there is an unexpected influence on a standard set of turbulent parameters in these laser-induced plasmas. Specifically, the continuous wave laser increased the complexity in the turbulent fluctuations. The continuous wave laser reduces the characteristic fluctuation frequencies in the neutral lines. Furthermore, the continuous wave laser enhances turbulence energies in ions while it diminishes turbulence energies in neutrals.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Johnson, J. A. III, Lin, I. and Santiago, J. P. 1990 Turbulent collisional ionizing shock waves in argon. J. Phys. D: Appl. Phys. 23, 662672.CrossRefGoogle Scholar
[2]Belay, K., Valentine, J. M., Williams, R. L. and Johnson, J. A. III, 1997 Interaction of turbulent plasma flow with a hypersonic shock wave. J. Appl. Phys. 81 (3), 10731076.CrossRefGoogle Scholar
[3]Podder, N. K., Mezonlin, E.-D. and Johnson, J. A. III 2002 Turbulent microwave plasma thermodynamics for fundamental fluctuation modes. Phys. of Plasma 9, 8, 33643368.CrossRefGoogle Scholar
[4]Roberson, S. D., Akpovo, C., Mezonlin, E.-D. and Johnson, J. A. III 2008 Evidence of turbulence in laser-induced plasmas. J. Appl. Phys. 103, 053307, 116.CrossRefGoogle Scholar
[5]Choudhui, A. R. 1998 The Physics of Fluids and Plasma: An Introduction for Astrophysicists. Cambridge University Press, pp. 174.CrossRefGoogle Scholar
[6]Landau, L. D. and Lifshitz, E. M. 1987 Fluid Mechanics. Reed Educational and Professional Ltd., pp. 130.Google Scholar
[7]Williams, K. M., Podder, N. K. and Johnson, J. A. III 2004 Universality in turbulence using turbulent energy concepts in moving and stationary plasmas. Phys. Lett. A 331, 1, 7076.CrossRefGoogle Scholar
[8]Annett, J. P. 2004 Superconductivity, Superfluids, and Condensates. Oxford University Press, Vol. 67, pp. 7174.CrossRefGoogle Scholar
[9]Shuster, H. G. 1995 Deterministic Chaos. D-69451 Weinheim: VCH Verlagsgesellschaft mbH, pp. 5455.Google Scholar
[10]Grassberger, P. and Procaccia, I. 1983 Characterization of Strange Attractors. Phys. Rev. Lett. 50, 5, 346349.CrossRefGoogle Scholar
[11]Frisch, U. 1998 Turbulence. Cambridge, UK: Cambridge University Press, pp. 9299.Google Scholar
[12]Numasato, R., Tsubota, M. and L'vov, V. S. 2010 Direct energy cascade in two-dimensional compressible quantum turbulence. Phys. Rev. A 81, 063630, 112.CrossRefGoogle Scholar
[13]Boffetta, G. and Musacchio, S. 2010 Evidence for the double cascade scenario in two-dimensional turbulence. Phys. Rev. E 82, 016307, 15.CrossRefGoogle ScholarPubMed
[14]Numasato, R., Tsubota, M. and L'vov, V. S. 2010 Direct energy cascade in two-dimensional compressible quantum turbulence. Phys. Rev. A 81, 063630, 112.CrossRefGoogle Scholar
[15]Boffetta, G. and Musacchio, S. 2010 Evidence for the double cascade scenario in two-dimensional turbulence. Phys. Rev. E 82, 016307, 15.CrossRefGoogle ScholarPubMed
[16]Tenekes, H. and Lumley, J. L. 1972 A First Course in Turbulence. Cambridge, Massachusetts: The MIT Press, pp. 300.CrossRefGoogle Scholar
[17]Wiggins, D. L., Raynor, C. T. and Johnson, J. A. III 2010 Evidence of inverse bremsstrahlung in laser enhanced laser-induced plasma. Phys. of Plasma, 17, 1, 16.CrossRefGoogle Scholar