Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T14:58:38.982Z Has data issue: false hasContentIssue false

Trapped-electron runaway effect

Published online by Cambridge University Press:  28 April 2015

E. Nilsson*
Affiliation:
CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France
J. Decker
Affiliation:
Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne, Switzerland
N. J. Fisch
Affiliation:
Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA
Y. Peysson
Affiliation:
CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France
*
Email address for correspondence: [email protected]

Abstract

In a tokamak, trapped electrons subject to a strong electric field cannot run away immediately, because their parallel velocity does not increase over a bounce period. However, they do pinch toward the tokamak center. As they pinch toward the center, the trapping cone becomes more narrow, so eventually they can be detrapped and run away. When they run away, trapped electrons will have a very different signature from circulating electrons subject to the Dreicer mechanism. The characteristics of what are called trapped-electron runaways are identified and quantified, including their distinguishable perpendicular velocity spectrum and radial extent.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ding, B. J. et al. 2012 Current ramp-up with lower hybrid current drive in EAST. Phys. Plasmas 19 (12), 122507.Google Scholar
Dreicer, H. 1959 Electron and ion runaway in a fully ionized gas. I. Phys. Rev. 115 (2), 238249.Google Scholar
Eriksson, L. G. and Helander, P. 2003 Simulation of runaway electrons during tokamak disruptions. Comput. Phys. Commun. 154, 175196.Google Scholar
Fisch, N. J. 1978 Confining a tokamak plasma with RF-driven currents. Phys. Rev. Lett. 41 (13), 873876.Google Scholar
Fisch, N. J. 1986 Transport in driven plasmas. Phys. Fluids 29 (1), 172179.Google Scholar
Fisch, N. J. 1987 Theory of current drive in plasmas. Rev. Mod. Phys. 59 (1), 175234.Google Scholar
Fisch, N. J. 2010 Transformer recharging with alpha channeling in tokamaks. J. Plasma Phys. 76 (3–4), 627634.Google Scholar
Fisch, N. J. and Boozer, A. H. 1980 Creating an asymmetric plasma resistivity with waves. Phys. Rev. Lett. 45 (9), 720722.Google Scholar
Fisch, N. J. and Karney, C. F. F. 1981 Current generation with low-frequency waves. Phys. Fluids 24 (1), 2739.Google Scholar
Fülöp, T. and Newton, S. 2014 Alfvenic instabilities driven by runaways in fusion plasmas. Phys. Plasmas 21 (8), 080702.Google Scholar
Fülöp, T. and Papp, G. 2012 Runaway positrons in fusion plasmas. Phys. Rev. Lett. 108 (21), 225003.Google Scholar
Fülöp, T., Pokol, G., Helander, P. and Lisak, M. 2006 Destabilization of magnetosonic-whistler waves by a relativistic runaway beam. Phys. Plasmas 13 (6), 062506.Google Scholar
Guan, X., Qin, H. and Fisch, N. J. 2010 Phase-space dynamics of runaway electrons in tokamaks. Phys. Plasmas 17, 092502.Google Scholar
Helander, P., Eriksson, L.-G. and Andersson, F. 2002 Runaway acceleration during magnetic reconnection in tokamaks. Plasma Phys. Control. Fusion 44B, 247262.Google Scholar
Helander, P. and Ward, D. J. 2003 Positron creation and annihilation in tokamak plasmas with runaway electrons. Phys. Rev. Lett. 90 (13), 135004.Google Scholar
Hender, T. C. et al. 2007 MHD stability, operational limits and disruptions. Nuclear Fusion 47, S128S202.Google Scholar
Izzo, V. A. et al. 2011 Runaway electron confinement modelling for rapid shutdown scenarios in DIII-D, Alcator C-Mod and ITER. Nuclear Fusion 51, 063032.Google Scholar
Karney, C. F. F. and Fisch, N. J. 1986 Current in wave-driven plasmas. Phys. Fluids 29 (1), 180192.Google Scholar
Karney, C. F. F., Fisch, N. J. and Jobes, F. C. 1985 Comparison of the theory and the practice of lower-hybrid current drive. Phys. Rev. A 32 (4), 25542556.Google Scholar
Laurent, L. and Rax, J. M. 1990 Stochastic-instability of runaway electrons in tokamaks. Europhys. Lett. 11 (3), 219224.Google Scholar
Li, M., Ding, B., Li, W., Kong, E., Shan, J., Liu, F., Wang, M. and Xu, H. 2012 Investigation of LHCD efficiency and transformer recharging in the EAST tokamak. Plasma Sci. Technol. 14 (3), 201206.Google Scholar
Liu, J., Qin, H., Fisch, N. J., Teng, Q. and Wang, X. 2014 What is the fate of runaway positrons in tokamaks? Phys. Plasmas 21, 064503.Google Scholar
Mueller, D. 2013 The physics of tokamak start-up. Phys. Plasmas 20 (5), 058101.Google Scholar
Nilsson, E., Decker, J., Peysson, Y., Granetz, R. S., Saint-Laurent, F. and Vlainic, M. 2015 Kinetic modelling of runaway electron avalanches in tokamak plasmas. Plasma Phys. Control. Fusion. Sumbitted For Publication.Google Scholar
Papp, G., Drevlak, M., Fülöp, T., Helander, P. and Pokol, G. I. 2011 Runaway electron losses caused by resonant magnetic perturbations in ITER. Plasma Phys. Control. Fusion 53 (9), 095004.Google Scholar
Parks, P. B., Rosenbluth, M. N. and Putvinski, S. V. 1999 Avalanche runaway growth rate from a momentum-space orbit analysis. Phys. Plasmas 6 (6), 25232528.Google Scholar
Pauli, W. 1958 Theory of Relativity. New York: Dover Publications.Google Scholar
Paz-Soldan, C. et al. 2014 Growth and decay of runaway electrons above the critical electric field under quiescent conditions. Phys. Plasmas 21 (2), 022514.Google Scholar
Rax, J. M., Fisch, N. J. and Laurent, L. 1993 Fast particle resonances in tokamaks. Plasma Phys. Control. Fusion 35 (B), B129B140.Google Scholar
Rosenbluth, M. N. and Putvinski, S. V. 1997 Theory for avalanche of runaway electrons in tokamaks. Nuclear Fusion 37 (10), 13551362.Google Scholar
Stahl, A., Landreman, M., Papp, G., Hollmann, E. and Fülöp, T. 2013 Synchrotron radiation from a runaway electron distribution in tokamaks. Phys. Plasmas 20, 093302.Google Scholar
Ware, A. A. 1970 Pinch effect for trapped particles in a tokamak. Phys. Rev. Lett. 25 (1), 1517.Google Scholar
Wort, D. J. H. 1971 The peristaltic tokamak. Plasma Phys. 13 (3), 258262.Google Scholar
Zeng, L. et al. and the TEXTOR team 2013 Experimental observation of a magnetic-turbulence threshold for runaway-electron generation in the TEXTOR tokamak. Phys. Rev. Lett. 110, 235003.Google Scholar