Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T11:39:29.775Z Has data issue: false hasContentIssue false

Toroidal plasma equilibrium with arbitrary current distribution

Published online by Cambridge University Press:  13 March 2009

M. Y. Kucinski
Affiliation:
Instituto de Física, Universidade de São Paulo, O.P. 20.516, 01498 - São Paulo, SP, Brazil
I. L. Caldas
Affiliation:
Instituto de Física, Universidade de São Paulo, O.P. 20.516, 01498 - São Paulo, SP, Brazil
L. H. A. Monteiro
Affiliation:
Instituto de Física, Universidade de São Paulo, O.P. 20.516, 01498 - São Paulo, SP, Brazil
V. Okano
Affiliation:
Instituto de Física, Universidade de São Paulo, O.P. 20.516, 01498 - São Paulo, SP, Brazil

Abstract

A new System of co-ordinates is found and a method developed to determine the toroidal equilibrium of plasmas with arbitrary current distribution and plasma cross-section. The method depends on knowledge of the equilibrium of a straight plasma column of similar cross-section and similar current distribution. A large aspect ratio is assumed. By successive approximations, better solutions can be obtained. An explicit formula is presented for the poloidal flux of a nearly circular plasma. This can be written in terms of a function related to the asymmetry of the poloidal field due to toroidality. The method works provided that there is only one magnetic axis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Biskamp, D. 1986 Comments Plasma Phys. Contr. Fusion, 10, 165.Google Scholar
Brusati, M., Christiansen, J. P., Cordey, J. G., Garret, R., Lazzaro, E. & Ross, R. T. 1984 Comput. Phys. Rep. 1, 345.CrossRefGoogle Scholar
Coppi, B. 1980 Comments Plasma Phys. Contr. Fusion, 5, 261.Google Scholar
Egorov, S. M., Kuteev, B. V., Miroshnikov, I. V. & Sergeev, V. Yu. 1987 Soviet Phys. JETP Lett. 46, 180.Google Scholar
Field, J. J. & Papaloizou, J. C. B. 1977 J. Plasma Phys. 18, 347.CrossRefGoogle Scholar
Hazeltine, R. D. & Montgomery, M. H. 1988 J. Plasma Phys. 40, 481.CrossRefGoogle Scholar
Kuznetzov, Yu. K., Pyatov, V. N. & Yasin, I. V. 1987 Soviet J. Plasma Phys. 13, 75.Google Scholar
Kuznetsov, Yu. K., Pyatov, V. N., Yasin, I. V., Golart, V. E., Gryaznevich, M. P., Lebedev, S. V., Sakharov, N. V. & Shakhovets, K. G. 1986 Nucl. Fusion, 26, 369.CrossRefGoogle Scholar
Mukhovatov, V. S. & Shafranov, V. D. 1971 Nucl. Fusion, 11, 605.CrossRefGoogle Scholar
Pfirsch, D. & Pohl, F. 1988 Z. Naturforsch. (a) 43, 395.CrossRefGoogle Scholar
Shafranov, V. D. 1966 Reviews of Plasma Physics, vol. 2, p. 103 (ed. Leontovich, M. A.). Consultants Bureau.Google Scholar
Vannucci, A., Nascimento, I. C. & Caldas, I. L. 1989 Plasma Phys. Contr. Fusion, 31, 147.CrossRefGoogle Scholar
Yoshikawa, S. 1974 Phys. Fluids, 17, 178.CrossRefGoogle Scholar