Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T14:58:16.861Z Has data issue: false hasContentIssue false

Toroidal equilibrium states with reversed magnetic shear and parallel flow in connection with the formation of Internal Transport Barriers

Published online by Cambridge University Press:  13 April 2015

Ap. Kuiroukidis
Affiliation:
Technological Education Institute of Serres, 62124 Serres, Greece
G. N. Throumoulopoulos*
Affiliation:
Physics Department, University of Ioannina, GR 451 10 Ioannina, Greece
*
Email address for correspondence: [email protected]

Abstract

We construct nonlinear toroidal equilibria of fixed diverted boundary shaping with reversed magnetic shear and flows parallel to the magnetic field. The equilibria have hole-like current density and the reversed magnetic shear increases as the equilibrium nonlinearity becomes stronger. Also, application of a sufficient condition for linear stability implies that the stability is improved as the equilibrium nonlinearity correlated to the reversed magnetic shear gets stronger with a weaker stabilizing contribution from the flow. These results indicate synergetic stabilizing effects of reversed magnetic shear, equilibrium nonlinearity and flow in the establishment of Internal Transport Barriers (ITBs).

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Apostolaki, D., Throumoulopoulos, G. N. and Tasso, H. 2008 35th EPS Conference on Plasma Phys. Hersonissos, 9-13 June 2008, ECA Vol. 32, P-2.057.Google Scholar
Betti, R. and Freidberg, J. P. 2000 Phys. Plasmas 7, 2439.Google Scholar
Challis, C. D. 2004 Plasma Phys. Control. Fusion 46, B23.Google Scholar
de Vries, P. C. et al. 2009 Nucl. Fusion 49, 075007.Google Scholar
Friedlander, S. and Vishik, M. M. 1995 Chaos 5, 416.Google Scholar
Gerald, C. and Wheatley, P. 1989 Applied Numerical Analysis. New York: Addison-Wesley.Google Scholar
Hameiri, E. 1983 Phys. Fluids 26, 230.Google Scholar
Iacono, R., Bondeson, A., Troyon, F. and Gruber, R. 1990 Phys. Fluids B 2, 1794.Google Scholar
Ide, S., Fujita, T., Naito, O. and Seki, M. 1996 Plasma Phys. Control. Fusion 38, 1645.Google Scholar
Ilgisonis, V. I. 1996 Phys. Plasmas 3, 4577.Google Scholar
Itoh, K. and Itoh, S.-I. 1996 Plasma Phys. Control. Fusion 38, 1.Google Scholar
Kuiroukidis, Ap and Throumoulopoulos, G. N. 2013 J. Plasma Physics 79, 257.Google Scholar
Kuiroukidis, Ap and Throumoulopoulos, G. N. 2014 J. Plasma Physics 80, 27.Google Scholar
Mashke, E. K. and Perrin, H. 1980 Plasma Physics 22, 579.Google Scholar
Morozov, I. and Solovev, L. S. 1980 Reviews of Plasma Physics, Vol. 8 (ed. Leontovich, M. A.). New York: Consultants Bureau, p. 1.Google Scholar
Morrison, P. J., Tassi, E. and Tronko, N. 2013 Phys. Plasmas 20, 042109.Google Scholar
Shafer, M. W. et al. 2009 Phys. Rev. Lett. 103, 075004.Google Scholar
Tasso, H. and Throumoulopoulos, G. N. 1998 Phys. Plasmas 5, 2378.Google Scholar
Throumoulopoulos, G. N. and Tasso, H. 2007 Phys. Plasmas 14, 122104.Google Scholar
Throumoulopoulos, G. N. and Tasso, H. 2010 Phys. Plasmas 17, 032508.Google Scholar
Throumoulopoulos, G. N. and Tasso, H. 2012 Phys. Plasmas 19, 014504.Google Scholar
Throumoulopoulos, G. N., Tasso, H. and Poulipoulis, G. 2008 J. Plasma Physics 74, 327.Google Scholar
Throumoulopoulos, G. N., Tasso, H. and Poulipoulis, G. 2009 J. Phys. A: Math. Theor. 42, 335501.Google Scholar
Vladimirov, V. A. and Ilin, K. I. 1998 Phys. Plasmas 5, 4199.Google Scholar
Wolf, R. C. 2003 Plasma Phys. Control. Fusion 45, R1R91.Google Scholar