Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-04T19:50:11.807Z Has data issue: false hasContentIssue false

Three-dimensional and nonlinear analysis of efficiency enhancement in the E × B drifting electron laser with a prebunched electron beam and a planar wiggler

Published online by Cambridge University Press:  12 April 2013

B. MARAGHECHI
Affiliation:
Department of Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran ([email protected])
M. JOKAR
Affiliation:
Department of Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran ([email protected])
F. JAFARI BAHMAN
Affiliation:
Department of Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran ([email protected])
A. NAEIMABADI
Affiliation:
Department of Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran ([email protected])

Abstract

A nonlinear simulation of the E × B drifting electron laser (DEL) and the free-electron laser (FEL), in three dimensions, is presented for a prebunched electron beam to study efficiency enhancement. For the planar wiggler with flat pole faces, prebunching considerably shortens the saturation length, which favors the DEL compared to the FEL. Operation of the DEL with the planar wiggler with parabolic pole faces was not found to be possible due to the modulation of the E × B drift by the wiggler. However, simulation results of the FEL with this type of wiggler are reported.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bekefi, G. and Shefer, R. E. 1979 J. Appl. Phys. 50, 5158.CrossRefGoogle Scholar
Beniwal, V., Sharma, S. C. and Sharma, M. K. 2004 Phys. Plasmas 11, 5716.CrossRefGoogle Scholar
Bessonov, E. G. 2004 Nucl. Instrum. Methods Phys. Res. A 528, 511.CrossRefGoogle Scholar
Bonifacio, R., Pellegrini, C. and Narducci, L. M. 1984 Opt. Commun. 50, 373.CrossRefGoogle Scholar
Cohen, M., Eichenbaum, A., Arbel, M., Ben-Haim, D., Kleinman, H., Draznin, M., Kugel, A., Yakover, I. and Gover, A. 1995 Phys. Rev. Lett. 74, 3812.CrossRefGoogle Scholar
Cohen, M., Kugel, A., Chairman, D., Arbel, M., Kleinman, H., Ben-Haim, D., Eichenbaum, A., Draznin, M., Pinhasi, Y., Yakover, I. and Gover, A. 1995 Nucl. Instrum. Methods Phys. Res. A 358, 82.CrossRefGoogle Scholar
Dattoli, G., Giannessi, L., Ottaviani, P. L. and Torre, A. 1994 Phys. Rev. E 49, 5668.Google Scholar
Freund, H. P. and Antonsen, J. M. 1996 Principles of Free Electron Laser, ch. 1. London: Chapman and Hall.Google Scholar
Freund, H. P., Bluem, H. and Chang, C. L. 1987 Phys. Rev. A 36, 2182.CrossRefGoogle Scholar
Freund, H. P., O'Shea, P. G. and Neumann, J. 2003 Nucl. Instrum. Methods Phys. Res. A 507, 400.CrossRefGoogle Scholar
Gardelle, J., Labrouche, J., Marchese, G., Rullier, J. L., Villate, D. and Donohue, J. T. 1996 Phys. Plasmas 3, 4197.CrossRefGoogle Scholar
Gover, A. 2005 Phys. Rev. ST Accel. Beams 8, 030701.CrossRefGoogle Scholar
Konoplev, I. V. and Phelps, A. D. R. 2000 Phys. Plasmas 7, 4280.CrossRefGoogle Scholar
Krinsky, S. 1999 Phys. Rev. E 59, 1171.Google Scholar
Orzechowski, T. J., Anderson, B. R., Clark, J. C., Fawley, W. M., Paul, A. C., Prosnitz, D., Scharlemann, E. T., Yarema, S. M., Hopkins, D. B., Sessler, A. M. and Wurtele, J. S. 1986 Phys. Rev. Lett. 57, 2172.CrossRefGoogle Scholar
Orzechowski, T. J., Anderson, B. R., Fawley, W. M., Prosnitz, D., Scharlemann, E. T., Yarema, S. M., Hopkins, D. B., Paul, A. C., Sessler, A. M. and Wurtele, J. S. 1985 Phys. Rev. Lett. 54, 889.CrossRefGoogle Scholar
Penn, G., Reinsch, M. and Wurtele, J. S. 2006 Phys. Rev. ST Accel. Beams 9, 060702.CrossRefGoogle Scholar
Phillips, R. M. 1960 Trans. IRE Electron Devices 7, 231.CrossRefGoogle Scholar
Phillips, R. M. 1988 Nucl. Instrum. Methods Phys. Res. A 272, 1.CrossRefGoogle Scholar
Riyopoulos, S. 1996 Phys. Plasmas 3, 3828.CrossRefGoogle Scholar
Riyopoulos, S. 1997 Phys. Rev. E 55, 1876.Google Scholar
Rouhani, M. H. and Maraghechi, B. 2010 Phys. Rev. ST Accel. Beams 13, 080706.CrossRefGoogle Scholar
Saito, K., Takayama, K., Ozaki, T., Kishiro, J., Ebihara, K. and Hiramatsu, S. 1996 Nucl. Instrum. Methods Phys. Res. A 375, 237.CrossRefGoogle Scholar
Scharlemann, E. T. 1985 J. Appl. Phys. 58, 2154.CrossRefGoogle Scholar
Shibata, Y., Ishi, K., Ono, S., Inoue, Y., Sasaki, S., Ikezawa, M., Takahashi, T., Matsuyama, T., Kobayashi, K., Fujita, Y. and Bessonov, E. G. 1997 Phys. Rev. Lett. 78, 2740.CrossRefGoogle Scholar
Walker, R. P. 1985 Nucl. Instrum. Methods Phys. Res. A 237, 366.CrossRefGoogle Scholar
Wiedeman, H. 2007 Particle Accelerator Physics. Berlin: Springer-Verlag.Google Scholar
Xu, Y., Ding, W. and Du, X. W. 1998 Nucl. Instrum. Methods Phys. Res. A 407, 490.CrossRefGoogle Scholar