Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T15:00:40.813Z Has data issue: false hasContentIssue false

Thermalization of a beam by beam-plasma interaction

Published online by Cambridge University Press:  13 March 2009

J. H. A. Van Wakeren
Affiliation:
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, Amsterdam
H. J. Hopman
Affiliation:
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, Amsterdam

Extract

We present measurements proving the successive excitation of two distinct instabilities by electron beam–plasma interaction along a plasma column. The first, appearing near the gun, grows in space, until the beam is trapped in the wave electric field, and decays. In this process the time-averaged distribution function changes, from a δ-type distribution function, into a plateau. This new beam–plasma distribution is also unstable; and another instability grows until the beam is again trapped. Numerical calculations show that the second instability can be explained, assuming that the beam distribution thermalizes when propagating from the first instability to the second.

Type
Articles
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boyd, D., Carr, W., Manickam, J., Rosen, B. & Seidl, M. 1963 Phys. Rev. Letters, 26, 1296.Google Scholar
Briggs, R. J. 1964 Electron-stream Interaction with Plasmas. MIT Press.CrossRefGoogle Scholar
Cabral, J. A. & Hopman, H. J. 1970 Plasma Phys. 12, 759.CrossRefGoogle Scholar
Carr, W., Boyd, D., Jones, R. & Seidl, M. 1973 Plasma Phys. 15, 826.CrossRefGoogle Scholar
Chou, S. & Bers, A. 1968 MIT Quart. Prog. Rep. 89, 131.Google Scholar
Dewar, R. L. 1973 Phys. Fluids, 16, 431.CrossRefGoogle Scholar
Drummond, W. E., Malmberg, J. H., O'neil, T. M. & Thompson, J. R. 1970 Phys. Fluids, 13, 2422.CrossRefGoogle Scholar
Gentle, K. W. & Lohr, J. 1973a Phys. Rev. Letters, 30, 73.CrossRefGoogle Scholar
Gentle, K. W. & Lohr, J. 1971b Phys. Fluids, 16, 1464.CrossRefGoogle Scholar
Gentle, K. W. & Robertson, C. W. 1971 Phys. Fluids, 14, 2780.CrossRefGoogle Scholar
Ivanov, A. A., Parail, V. V. & Soboleva, T. K. 1973 Soviet Phys. JETP, 36, 887.Google Scholar
Ivanov, A. A. & Rudakov, L. I. 1967 Soviet Phys. JETP, 24, 1027.Google Scholar
Matsiborko, N. G., Onishenko, I. N., Schapiro, V. D. & Shevchenko, V. I. 1972 Plasma Phys. 14, 591.CrossRefGoogle Scholar
Mizuno, K. & Tanaka, S. 1972 Phys. Rev. Letters, 29, 45.CrossRefGoogle Scholar
O'nell, T. M. & Winfrey, J. H. 1972 Phys. Fluids, 15, 1514.CrossRefGoogle Scholar
O'nell, T. M., Winfrey, J. H. & Malmberg, J. H. 1971 Phys. Fluids, 14, 1204.CrossRefGoogle Scholar
Rosen, B., Schmidt, G. & Kruer, W. L. 1972 Phys. Fluids, 15, 2001.CrossRefGoogle Scholar
Seidl, M. 1970 Phys. Fluids, 13, 966.CrossRefGoogle Scholar
Sunka, P. 1973 Proc. 7th European Conf. on Controlled Fusion and Plasma Phys., Moscow, p. 517. Joint Institute for Nuclear Research.Google Scholar
Swain, D. W., Mix, L. P. & Chang, J. 1973 Rev. Sci. Instr. 44, 1703.Google Scholar
Thompson, J. R. 1971 Phys. Fluids, 14, 1532.CrossRefGoogle Scholar
Wakeren, J. H. A. Van & Hopman, H. J. 1971 Proc. 10th mt. Conf. on Phenomena in Ionized Gases, Oxford, p. 367. Oxford: Parsons.Google Scholar
Wakeren, J. H. A. Van & Hopman, H. J. 1972 Phys. Rev. Letters, 28, 295.CrossRefGoogle Scholar
Wakeren, J. H. A. Van, Hopman, H. J., Jurgens, B. & Kistemaker, J. 1974 Plasma Phys. 16, 63.CrossRefGoogle Scholar