Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T08:31:22.243Z Has data issue: false hasContentIssue false

Theory of nonlinear interaction of particles and waves in an inverse plasma maser. Part 1. Collision integral

Published online by Cambridge University Press:  13 March 2009

Victor S. Krivitsky
Affiliation:
Theoretical Department, General Physics Institute, Academy of Sciences of the U.S.S.R., Vavilov Street 38, Box 117333, Moscow U.S.S.R.
Sergey V. Vladimirov
Affiliation:
Theoretical Department, General Physics Institute, Academy of Sciences of the U.S.S.R., Vavilov Street 38, Box 117333, Moscow U.S.S.R.

Abstract

An expression is obtained for the collision integral describing the simultaneous interaction of plasma particles with resonant and non-resonant waves. It is shown that this collision integral is determined by two processes: a ‘direct’ nonlinear interaction of particles and waves, and the influence of the non-stationarity of the system. The expression for the nonlinear collision integral is found to be quite different from the expression for a quasi-linear collision integral; in particular, the nonlinear integral contains higher-order derivatives of the distribution function with respect to momentum than the quasi-linear one.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, J. C.Laval, G. & Pesme, D. 1979 Phys. Rev. Lett. 43, 1671.CrossRefGoogle Scholar
Choi, D. & Horton, W. 1974 Phys. Fluids, 17, 2048.CrossRefGoogle Scholar
Drummond, W. E. & Pines, D. 1962 Nucl. Fusion Suppl. part 3, p. 1049.Google Scholar
Dupree, T. H. 1966 Phys. Fluids, 9, 1773.CrossRefGoogle Scholar
Galeev, A. A., Sagdeev, R. Z., Shapiro, V. D. & Shevchenko, V. I. 1980 Soviet Phys. JETP, 52, 1095.Google Scholar
Isakov, S. B., Krivitsky, V. S. & Tsytovich, V. N. 1986 Soviet Phys. JETP, 63, 545.Google Scholar
Isakov, S. B., Krivitsky, V. S. & Tsytovich, V. N. 1988 Soviet J. Plasma Phys. 14, 294.Google Scholar
Krivitsky, V. S. & Tsytovich, V. N. 1986 Soviet Phys. Radiophys. Quantum Electron. 29, 915.CrossRefGoogle Scholar
Laval, G. & Pesme, D. 1983 Phys. Fluids, 26, 52; 66.CrossRefGoogle Scholar
Laval, G. & Pesme, D. 1984 Phys. Rev. Lett. 53, 270.CrossRefGoogle Scholar
Marshall, T. C. 1985 Free-Electron Lasers. MacMillan.Google Scholar
Rudakov, L. I. & Tsytovich, V. N. 1971 Plasma Phys. 13, 213.CrossRefGoogle Scholar
Ting, A. C. & Sprangle, P. A. 1987 Particle Accelerators 22, 149.Google Scholar
Tsytovich, V. N. 1977 Theory of Turbulent Plasma. Consultants Bureau.CrossRefGoogle Scholar
Tsytovich, V. N. 1985 Soviet Phys. JETP, 62, 483.Google Scholar
Tsytovich, V. N., Stenflo, L. & Wilhelmsson, H. 1975 Physica Scripta, 11, 251.CrossRefGoogle Scholar
Vedenov, A. A., Velikhov, E. P. & Sagdeev, R. Z. 1962 Nucl. Fusion Suppl. part 2, p. 465.Google Scholar
Weinstock, J. 1969 Phys. Fluids, 12, 1045.CrossRefGoogle Scholar