Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-29T05:09:37.818Z Has data issue: false hasContentIssue false

Surface waves on the spin-1/2 quantum magnetoplasma half-space

Published online by Cambridge University Press:  30 July 2014

Jun Zhu*
Affiliation:
School of Physics and Electronic Engineering, Shanxi University, Taiyuan, 030006, China
*
Email address for correspondence: [email protected]

Abstract

We present a theoretical investigation on the propagation of surface waves on the magnetized degenerate electron plasma half-space with spin effects. Using magnetohydrodynamic model with quantum effects due to the Bohm potential, Fermi degenerate pressure and electron spin, the dispersion relations of surface plasmon polaritons (SPPs) are derived. The dispersion relation of electrostatic surface waves is also obtained by taking electrostatic limit.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderegg, F., Hollmann, E. M. and Driscoll, C. F. 1998 Phys. Rev. Lett. 81, 4875.CrossRefGoogle Scholar
Anderson, M. W. and O'Neil, T. M. 2007 Phys. Plasmas 14, 112110.Google Scholar
Atwater, H. A. 2007 Sci. Am. 296, 56.Google Scholar
Brodin, G. and Marklund, M. 2007 New J. Phys. 9, 277.Google Scholar
Chang, I. S. and Jung, Y. D. 2008 Phys. Lett. A 372, 1498.CrossRefGoogle Scholar
Fourkal, E., Velchev, I., Ma, C.-M. and Smolyakov, A. 2006 Phys. Plasmas 13, 092113.CrossRefGoogle Scholar
Guernsey, R. L. 1969 Phys. Fluids 12, 1852.Google Scholar
Lazar, M., Moslem, W. M., Smolyakov, A. and Shukla, P. K. 2009 Phys. Plasmas 16, 052102.CrossRefGoogle Scholar
Lazar, M., Shukla, P. K. and Smolyakov, A. 2007 Phys. Plasmas 14, 124501.Google Scholar
Manfredi, G. and Hervieux, P. A. 2007 Appl. Phys. Lett. 91, 061108.Google Scholar
Marklund, M. and Brodin, G. 2007 Phys. Rev. Lett. 98, 025001.Google Scholar
Mohamed, B. F. 2010 Phys. Scr. 82, 065502.Google Scholar
Moslem, W. M., Lazar, M., Sabry, R. and Shukla, P. K. 2009 Phys. Plasmas 16, 122106.CrossRefGoogle Scholar
Ritchie, R. H. 1963 Progr. Theoret. Phys. 29, 607.Google Scholar
Robinson, M. P., et al. 2000 Phys. Rev. Lett. 85, 4466.Google Scholar
Palmer, D. M., Barthelmy, S. and Gehrels, N. 2005 Nature 434, 1107.Google Scholar
Tercas, H., Mendonca, J. T. and Shukla, P. K. 2008 Phys. Plasmas 15, 072109.Google Scholar
Trivelpiece, A. W. and Gould, R. W. 1959 J. Appl. Phys. 30, 1784.CrossRefGoogle Scholar
Vedenov, A. A. 1965 Sov. Phys. Usp. 7, 809.CrossRefGoogle Scholar
Wolf, S. A., et al. 2001 Science 294, 1488.Google Scholar
Yu, M. Y. and Zhelyazkov, I. 1978 J. Plasma Phys. 20, 183.CrossRefGoogle Scholar
Zaginaylov, G. I. 2001 Phys. Rev. E 64, 016406.Google Scholar
Zhu, J., Zhao, H. and Qiu, M. 2013 Phys. Lett. A 377, 1736.Google Scholar