Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T18:24:10.000Z Has data issue: false hasContentIssue false

Suprathermal drift through a warm collisional plasma: evolutional solution

Published online by Cambridge University Press:  13 March 2009

Lim Chee-Seng
Affiliation:
Department of Mathematics, National University of Singapore, Singapore 0511, Republic of Singapore

Abstract

Evolutional drift-theory representations are used to consider suprathermal drift of a switched-on electron through a warm collisional plasma. The general suprathermal solution for an arbitrarily time-varying electron is made up of two nontrivial constituents. One of these exists in the interior R2 of an expanding thermal front Г. The other exists in a drifting-extending region R1 enclosed by part of Г, together with a sheet that diverges downstream from the suprathermal electron (outside Г) and terminates tangentially at Г. The solution vanishes identically beyond R1, R2 and their boundaries. Two- and three-dimensional closed forms of an exact solution are next extracted in R1 for the pulsating electron with complex frequency. Furthermore, two-dimensional near-ultimate state results are asymptotically derived deep within R2 for a real electron frequency and a collisionless plasma. Hyperbolic/hyperboloidal attenuation normally affects space-time dissipation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chee-Seng, L. 1974 J. Fluid Mech. 63, 273.CrossRefGoogle Scholar
Chee-Seng, L. 1978 Proc. Roy. Soc. A364, 181.Google Scholar
Chee-Seng, L. 1985 J. Plasma Phys. 33, 83.CrossRefGoogle Scholar
Chenevier, P., Dolique, J. M. & Perès, H. 1973 J. Plasma Phys. 10, 185.CrossRefGoogle Scholar
Cooper, G. 1969 Phys. Fluids, 12, 2707.CrossRefGoogle Scholar
Fiala, V. 1973 J. Plasma Phys. 10, 371.CrossRefGoogle Scholar
Fiala, V. 1979 Czech. J. Phys. B29, 589.CrossRefGoogle Scholar
Fiala, V. 1982 Plasma Phys. 24, 577.CrossRefGoogle Scholar
Hebenstreit, H. & Suchy, K. 1978 Kleinheubacher Ber. 21, 135.Google Scholar
Hebenstreit, H. 1979 Z. Naturforsch. 34a, 155.CrossRefGoogle Scholar
Joyce, G. & Montgomery, D. 1967 Phys. Fluids, 10, 2017.CrossRefGoogle Scholar
Kuehl, H. H. 1974 Phys. Fluids, 17, 1275.CrossRefGoogle Scholar
Laing, E. W., Lamont, A. & Fielding, P. J. 1971 J. Plasma Phys. 5, 441.CrossRefGoogle Scholar
Michel, E. 1976 J. Plasma Phys. 15, 395.CrossRefGoogle Scholar
Montgomery, D., Joyce, G. & Sugihara, R. 1968 Plasma Phys. 10, 681.CrossRefGoogle Scholar
Mourgues, G., Fijalkow, E. & Feix, M. R. 1980 Plasma Phys. 22, 367.Google Scholar
Stenflo, L., Yu, M. Y. & Shukla, P. K. 1973 Phys. Fluids, 16, 450.CrossRefGoogle Scholar
Storey, L. R. O. & Thiel, J. 1978 Phys. Fluids, 21, 2325.CrossRefGoogle Scholar
Storey, L. R. O., Thiel, J. & Boswell, R. W. 1980 Phys. Fluids, 23, 654.CrossRefGoogle Scholar
Wang, C.-L., Joyce, G. & Nicholson, D. R. 1981 J. Plasma Phys. 25, 225.CrossRefGoogle Scholar
Watson, G. N. 1944 Theory of Bessel Functions. Cambridge University Press.Google Scholar