Article contents
Suprathermal drift through a warm collisional plasma: evolutional solution
Published online by Cambridge University Press: 13 March 2009
Abstract
Evolutional drift-theory representations are used to consider suprathermal drift of a switched-on electron through a warm collisional plasma. The general suprathermal solution for an arbitrarily time-varying electron is made up of two nontrivial constituents. One of these exists in the interior R2 of an expanding thermal front Г. The other exists in a drifting-extending region R1 enclosed by part of Г, together with a sheet that diverges downstream from the suprathermal electron (outside Г) and terminates tangentially at Г. The solution vanishes identically beyond R1, R2 and their boundaries. Two- and three-dimensional closed forms of an exact solution are next extracted in R1 for the pulsating electron with complex frequency. Furthermore, two-dimensional near-ultimate state results are asymptotically derived deep within R2 for a real electron frequency and a collisionless plasma. Hyperbolic/hyperboloidal attenuation normally affects space-time dissipation.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1986
References
REFERENCES
- 2
- Cited by