Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T02:51:02.768Z Has data issue: false hasContentIssue false

Study on stability and growth rate of the dust acoustic waves in vortex-like ion distribution

Published online by Cambridge University Press:  06 January 2012

SHAO-SHAN ZHENG
Affiliation:
School of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000, China ([email protected]; [email protected])
YAN CHEN
Affiliation:
School of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000, China ([email protected]; [email protected])

Abstract

For vortex-like ion distribution dusty plasmas, the modified KP equation is obtained by using the traditional perturbation method. The growth rate of a solitary wave solution for a higher order disturbance propagating in an arbitrary direction is obtained. We find that the solitary wave is stable under higher order disturbance in this system. However, the growth rate is different with different propagating direction.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Planet. Space Sci. 38, 543546.CrossRefGoogle Scholar
[2]Shukla, P. K. and Silin, Y. P. 1992 Phys. Scr. 45, 508.CrossRefGoogle Scholar
[3]D'Angelo, N. 1990 Planet. Space Sci. 38, 11431146.CrossRefGoogle Scholar
[4]Goertz, C. K. 1989 Rev. Geophys. 27, 271292.CrossRefGoogle Scholar
[5]Verheest, F. 1996 Space Sci. Rev. 77, 267302.CrossRefGoogle Scholar
[6]Chu, J. H., Du, J. B. and Lin, I. H. 1994 J. Phys. D 27, 296300.CrossRefGoogle Scholar
[7]D'Angelo, N. 1995 J. Phys. D 28, 10091010.CrossRefGoogle Scholar
[8]Barkan, A., Merlino, R. L. and D'Angelo, N. 1995 Phys. Plasma 2, 35633565.CrossRefGoogle Scholar
[9]Barkan, A., Merlino, R. L. and D'Angelo, N. 1996 Planet. Space Sci. 44, 239242.CrossRefGoogle Scholar
[10]Duan, W. S. and Shi, Y. R. 2003 Chaos Solitons Fract. 18, 321328.CrossRefGoogle Scholar
[11]Xiao, D. L., Ma, J. X. and Li, Y. F. 2006 Phys. Plasmas 13, 052308.CrossRefGoogle Scholar
[12]Xie, B. S. and Du, S. C. 2006 Phys. Plasmas 113, 074504.CrossRefGoogle Scholar
[13]Meuris, P. 1997 Planet. Space Sci. 45, 449454.CrossRefGoogle Scholar
[14]Meuris, P. 1997 Space Sci. 45, 11711174.CrossRefGoogle Scholar
[15]Han, J. N., Yang, X. X., Tiao, T. X. and Duan, W. S. 2008 Phys. Lett. A 372, 48174821.CrossRefGoogle Scholar
[16]Wei, L. and Wang, Y. N. 2007 Phys. Rev. B 75, 193407.CrossRefGoogle Scholar
[17]Hou, L. J. and Wang, Y. N. 2004 Phys. Rev. E 70, 056406.CrossRefGoogle Scholar
[18]Yang, X. X., Duan, W. S., Han, J. N. and Li, S. C. 2008 Chin. Phys. 17, 2985.Google Scholar
[19]Mamum, A. A., Cairns, R. A. and Shukla, P. K. 1996 Phys. Plasmas 3, 2610.CrossRefGoogle Scholar
[20]Schamel, H. 1972 Phys. Plasmas 14, 905.CrossRefGoogle Scholar
[21]Schamel, H. 1975 J. Plasma Phys. 17, 139.CrossRefGoogle Scholar
[22]Schamel, H. 1981 J. Plasma Phys. 25, 515.Google Scholar
[23]Munro, S. and Parkes, E. J. 1999 J. Plasma Phys. 42, 305.CrossRefGoogle Scholar
[24]Munro, S. and Parkes, E. J. 2000 J. Plasma Phys. 64, 411.CrossRefGoogle Scholar
[25]Munro, S. and Parkes, E. J. 2004 J. Plasma Phys. 70, 543.CrossRefGoogle Scholar
[26]Parkes, E. J. and Munro, S. 2005 J. Plasma Phys. 71, 695.CrossRefGoogle Scholar