Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T08:39:44.524Z Has data issue: false hasContentIssue false

Steady plasma flows in a periodic non-symmetric domain

Published online by Cambridge University Press:  18 November 2021

Harold Weitzner
Affiliation:
Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
Wrick Sengupta*
Affiliation:
Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08543, USA Princeton Plasma Physics Laboratory, Princeton, NJ 08540, USA
*
Email address for correspondence: [email protected]

Abstract

Steady plasma flows have been studied almost exclusively in systems with continuous symmetry or in open domains. In the absence of continuous symmetry, the lack of a conserved quantity makes the study of flows intrinsically challenging. In a toroidal domain, the requirement of double periodicity for physical quantities adds to the complications. In particular, the magnetohydrodynamics (MHD) model of plasma steady state with the flow in a non-symmetric toroidal domain allows the development of singularities when the rotational transform of the magnetic field is rational, much like the equilibrium MHD model. In this work, we show that steady flows can still be maintained provided the rotational transform is close to rational and the magnetic shear is weak. We extend the techniques developed in carrying out perturbation methods to all orders for static MHD equilibrium by Weitzner (Phys. Plasmas, vol. 21, 2014, p. 022515) to MHD equilibrium with flows. We construct perturbative MHD equilibrium in a doubly periodic domain with nearly parallel flows by systematically eliminating magnetic resonances order by order. We then utilize an additional symmetry of the flow problem, first discussed by Hameiri (J. Math. Phys., vol. 22, 1981, pp. 2080–2088, § III), to obtain a generalized Grad–Shafranov equation for a class of non-symmetric three-dimensional MHD equilibrium with flows both parallel and perpendicular to the magnetic field. For this class of flows, we can obtain non-symmetric generalizations of integrals of motion, such as Bernoulli's function and angular momentum. Finally, we obtain the generalized Hamada conditions, which are necessary to suppress singular currents in such a system when the magnetic field lines are closed. We do not attempt to address the question of neoclassical damping of flows.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abel, I.G., Plunk, G.G., Wang, E., Barnes, M., Cowley, S.C., Dorland, W. & Schekochihin, A.A. 2013 Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows. Rep. Prog. Phys. 76 (11), 116201.CrossRefGoogle ScholarPubMed
Andreussi, T., Morrison, P.J. & Pegoraro, F. 2012 Hamiltonian magnetohydrodynamics: helically symmetric formulation, casimir invariants, and equilibrium variational principles. Phys. Plasmas 19 (5), 052102.CrossRefGoogle Scholar
Beskin, V.S. 1997 Axisymmetric stationary flows in compact astrophysical objects. Phys. Usp. 40 (7), 659.CrossRefGoogle Scholar
Beskin, V.S. 2009 MHD Flows in Compact Astrophysical Objects: Accretion, Winds and Jets. Springer Science & Business Media.Google Scholar
Bogoyavlenskij, O.I. 2000 a Astrophysical jets as exact plasma equilibria. Phys. Rev. Lett. 84 (9), 1914.CrossRefGoogle ScholarPubMed
Bogoyavlenskij, O.I. 2000 b Helically symmetric astrophysical jets. Phys. Rev. E 62 (6), 8616.CrossRefGoogle ScholarPubMed
Boozer, A.H. 1981 Plasma equilibrium with rational magnetic surfaces. Phys. Fluids 24 (11), 19992003.CrossRefGoogle Scholar
Burby, J.W., Kallinikos, N. & MacKay, R.S. 2020 a Some mathematics for quasi-symmetry. J. Math. Phys. 61 (9), 093503.CrossRefGoogle Scholar
Burby, J.W., Kallinikos, N. & MacKay, R.S. 2020 b Generalized Grad–Shafranov equation for non-axisymmetric mhd equilibria. Phys. Plasmas 27 (10), 102504.CrossRefGoogle Scholar
Burrell, K.H. 1997 Effects of $E\times B$ velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices. Phys. Plasmas 4 (5), 14991518.CrossRefGoogle Scholar
Burrell, K.H. 1999 Tests of causality: experimental evidence that sheared $E\times B$ flow alters turbulence and transport in tokamaks. Phys. Plasmas 6 (12), 44184435.CrossRefGoogle Scholar
Canik, J.M., Anderson, D.T., Anderson, F.S. B., Likin, K.M., Talmadge, J.N. & Zhai, K. 2007 Experimental demonstration of improved neoclassical transport with quasihelical symmetry. Phys. Rev. Lett. 98 (8), 085002.CrossRefGoogle ScholarPubMed
Chu, M.S., Greene, J.M., Jensen, T.H., Miller, R.L., Bondeson, A., Johnson, R.W. & Mauel, M.E. 1995 Effect of toroidal plasma flow and flow shear on global magnetohydrodynamic MHD modes. Phys. Plasmas 2 (6), 22362241.CrossRefGoogle Scholar
Constantin, P., Drivas, T.D. & Ginsberg, D. 2021 On quasisymmetric plasma equilibria sustained by small force. J. Plasma Phys. 87 (1), 905870111.Google Scholar
Courant, R. & Friedrichs, K.O. 1999 Supersonic Flow and Shock Waves, vol. 21. Springer Science & Business Media.Google Scholar
Davis, S.W. & Tchekhovskoy, A. 2020 Magnetohydrodynamics simulations of active galactic nucleus disks and jets. Annu. Rev. Astron. Astrophys. 58, 407439.CrossRefGoogle Scholar
D'haeseleer, W.D., Hitchon, W.N.G., Callen, J.D. & Shohet, J.L. 1991 Flux Coordinates and Magnetic Field Structure: A Guide to a Fundamental Tool of Plasma Theory. Springer.CrossRefGoogle Scholar
Freidberg, J.P. 2014 Ideal MHD. Cambridge University Press.CrossRefGoogle Scholar
Fujisawa, A. 2008 A review of zonal flow experiments. Nucl. Fusion 49 (1), 013001.CrossRefGoogle Scholar
Garren, D.A. & Boozer, A.H. 1991 Existence of quasihelically symmetric stellarators. Phys. Fluids B: Plasma Phys. 3 (10), 28222834.CrossRefGoogle Scholar
Goedbloed, J.P.H., Goedbloed, J.P. & Poedts, S. 2004 Principles of Magnetohydrodynamics: with Applications to Laboratory and Astrophysical Plasmas. Cambridge University Press.CrossRefGoogle Scholar
Goedbloed, J.P. & Lifschitz, A. 1997 Stationary symmetric magnetohydrodynamic flows. Phys. Plasmas 4 (10), 35443564.CrossRefGoogle Scholar
Grad, H. 1967 Toroidal containment of a plasma. Phys. Fluids 10 (1), 137154.CrossRefGoogle Scholar
Grad, H. 1971 Plasma containment in closed line systems. In Plasma Physics and Controlled Nuclear Fusion Research 1971. III. Proceedings of the Fourth International Conference on Plasma Physics and Controlled Nuclear Fusion Research.Google Scholar
Greene, J.M. & Karlson, E.T. 1969 Variational principle for stationary magnetohydrodynamic equilibria. Phys. Fluids 12 (3), 561567.CrossRefGoogle Scholar
Groebner, R.J., Burrell, K.H. & Seraydarian, R.P. 1990 Role of edge electric field and poloidal rotation in the L-H transition. Phys. Rev. Lett. 64 (25), 3015.CrossRefGoogle ScholarPubMed
Guazzotto, L. & Betti, R. 2005 Magnetohydrodynamics equilibria with toroidal and poloidal flow. Phys. Plasmas 12 (5), 056107.CrossRefGoogle Scholar
Hamada, S. 1962 Hydromagnetic equilibria and their proper coordinates. Nucl. Fusion 2 (1–2), 23.CrossRefGoogle Scholar
Hameiri, E. 1981 Spectral estimates, stability conditions, and the rotating screw-pinch. J. Math. Phys. 22 (9), 20802088.CrossRefGoogle Scholar
Hameiri, E. 1983 The equilibrium and stability of rotating plasmas. Phys. Fluids 26 (1), 230237.CrossRefGoogle Scholar
Hameiri, E. 1998 Variational principles for equilibrium states with plasma flow. Phys. Plasmas 5 (9), 32703281.CrossRefGoogle Scholar
Hassam, A.B. 1996 Poloidal rotation of tokamak plasmas at super poloidal sonic speeds. Nucl. Fusion 36 (6), 707.CrossRefGoogle Scholar
Hegna, C.C. 2012 Plasma flow healing of magnetic islands in stellarators. Phys. Plasmas 19 (5), 056101.CrossRefGoogle Scholar
Helander, P. 1998 Neoclassical transport in a rotating impure plasma. Phys. Plasmas 5 (4), 12091211.CrossRefGoogle Scholar
Helander, P. 2007 On rapid plasma rotation. Phys. Plasmas 14 (10), 104501.CrossRefGoogle Scholar
Helander, P. 2014 Theory of plasma confinement in non-axisymmetric magnetic fields. Rep. Prog. Phys. 77 (8), 087001.CrossRefGoogle ScholarPubMed
Helander, P., Beidler, C.D., Bird, T.M., Drevlak, M., Feng, Y., Hatzky, R., Jenko, F., Kleiber, R., Proll, J.H.E., Turkin, Yu., et al. 2012 Stellarator and tokamak plasmas: a comparison. Plasma Phys. Control. Fusion 54 (12), 124009.CrossRefGoogle Scholar
Helander, P. & Simakov, A.N. 2008 Intrinsic ambipolarity and rotation in stellarators. Phys. Rev. Lett. 101 (14), 145003.CrossRefGoogle ScholarPubMed
Hinton, F.L. & Wong, S.K. 1985 Neoclassical ion transport in rotating axisymmetric plasmas. Phys. Fluids 28 (10), 30823098.CrossRefGoogle Scholar
Igumenshchev, I.V. 2008 Magnetically arrested disks and the origin of poynting jets: a numerical study. Astrophys. J. 677 (1), 317.CrossRefGoogle Scholar
Igumenshchev, I.V., Narayan, R. & Abramowicz, M.A. 2003 Three-dimensional magnetohydrodynamic simulations of radiatively inefficient accretion flows. Astrophys. J. 592 (2), 1042.CrossRefGoogle Scholar
Ilgisonis, V.I. & Pastukhov, V.P. 2000 Variational approaches to the problems of plasma stability and of nonlinear plasma dynamics. J. Expl Theor. Phys. Lett. 72 (10), 530540.CrossRefGoogle Scholar
Istomin, Ya.N. & Pariev, V.I. 1996 Stability of a relativistic rotating electron-positron jet: non-axisymmetric perturbations. Mon. Not. R. Astron. Soc. 281 (1), 126.CrossRefGoogle Scholar
Kamchatnov, A.M. 1982 Topological solitons in magnetohydrodynamics. Zh. Eksp. Teor. Fiz 82, 117124.Google Scholar
Kovrizhnykh, L.M. & Shchepetov, S.V. 1980 Description of a stellarator plasma with averaged MHD equations. Sov. J. Plasma Phys. (Engl. Transl.); (United States) 6 (5), 976–986.Google Scholar
Kovrizhnykh, L.M. & Shchepetov, S.V. 1989 Stellarator equilibria with steady flow. Nucl. Fusion 29 (4), 667–671.CrossRefGoogle Scholar
Landreman, M. & Sengupta, W. 2019 Constructing stellarators with quasisymmetry to high order. J. Plasma Phys. 85 (6).CrossRefGoogle Scholar
Lifschitz, A. & Goedbloed, J.P. 1997 Transonic magnetohydrodynamic flows. J. Plasma Phys. 58 (1), 6199.CrossRefGoogle Scholar
Lin, Z., Hahm, T.S., Lee, W.W., Tang, W.M. & White, R.B. 1998 Turbulent transport reduction by zonal flows: massively parallel simulations. Science 281 (5384), 18351837.CrossRefGoogle ScholarPubMed
Loizu, J., Hudson, S., Bhattacharjee, A. & Helander, P. 2015 a Magnetic islands and singular currents at rational surfaces in three-dimensional magnetohydrodynamic equilibria. Phys. Plasmas 22 (2), 022501.CrossRefGoogle Scholar
Loizu, J., Hudson, S.R., Bhattacharjee, A., Lazerson, S. & Helander, P. 2015 b Existence of three-dimensional ideal-magnetohydrodynamic equilibria with current sheets. Phys. Plasmas 22 (9), 090704.CrossRefGoogle Scholar
McClements, K.G. & Hole, M.J. 2010 On steady poloidal and toroidal flows in tokamak plasmas. Phys. Plasmas 17 (8), 082509.CrossRefGoogle Scholar
McKinney, J.C. & Blandford, R.D. 2009 Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations. Mon. Not. R. Astron. Soc. 394 (1), L126L130.CrossRefGoogle Scholar
Morawetz, C.S. 1985 On a weak solution for a transonic flow problem. Commun. Pure Appl. Maths 38 (6), 797817.CrossRefGoogle Scholar
Morozov, A.I. & Solov'ev, L.S. 1980 Steady-state plasma flow in a magnetic field. Rev. Plasma Phys./Voprosy Teorii Plazmy 8, 1103.Google Scholar
Newcomb, W.A. 1959 Magnetic differential equations. Phys. Fluids 2 (4), 362365.CrossRefGoogle Scholar
Rees, E.L. 1922 Graphical discussion of the roots of a quartic equation. Am. Math. Mon. 29 (2), 5155.CrossRefGoogle Scholar
Rodriguez, E., Helander, P. & Bhattacharjee, A. 2020 Necessary and sufficient conditions for quasisymmetry. Phys. Plasmas 27 (6), 062501.CrossRefGoogle Scholar
Rodriguez, E., Sengupta, W. & Bhattacharjee, A. 2021 Generalized boozer coordinates. J. Plasma Phys. (in preparation).CrossRefGoogle Scholar
Simakov, A.N. & Helander, P. 2009 Neoclassical momentum transport in a collisional stellarator and a rippled tokamak. Phys. Plasmas 16 (4), 042503.CrossRefGoogle Scholar
Simakov, A.N. & Helander, P. 2011 Plasma rotation in a quasi-symmetric stellarator. Plasma Phys. Control. Fusion 53 (2), 024005.CrossRefGoogle Scholar
Solov'ev, L.S. & Shafranov, V.D. 1970 Plasma confinement in closed magnetic systems. Rev. Plasma Phys. 5, 1247.Google Scholar
Spong, D.A. 2005 Generation and damping of neoclassical plasma flows in stellarators. Phys. Plasmas 12 (5), 056114.CrossRefGoogle Scholar
Stroth, U., Manz, P. & Ramisch, M. 2011 On the interaction of turbulence and flows in toroidal plasmas. Plasma Phys. Control. Fusion 53 (2), 024006.CrossRefGoogle Scholar
Sugama, H., Watanabe, T.-H., Nunami, M. & Nishimura, S. 2011 Quasisymmetric toroidal plasmas with large mean flows. Phys. Plasmas 18 (8), 082505.CrossRefGoogle Scholar
Tasso, H. & Throumoulopoulos, G.N. 1998 Axisymmetric ideal magnetohydrodynamic equilibria with incompressible flows. Phys. Plasmas 5 (6), 23782383.CrossRefGoogle Scholar
Terry, P.W. 2000 Suppression of turbulence and transport by sheared flow. Rev. Mod. Phys. 72 (1), 109.CrossRefGoogle Scholar
Tessarotto, M., Johnson, J.L., White, R.B. & Zheng, L.-J. 1996 Quasi-helical magnetohydrodynamic equilibria in the presence of flow. Phys. Plasmas 3 (7), 26532663.CrossRefGoogle Scholar
Throumoulopoulos, G.N., Weitzner, H. & Tasso, H. 2006 On nonexistence of tokamak equilibria with purely poloidal flow. Phys. Plasmas 13 (12), 122501.CrossRefGoogle Scholar
Villata, M. & Ferrari, A. 1994 Exact solutions for helical MHD equilibria of astrophysical jets. Astron. Astrophys. 284, 663678.Google Scholar
Villata, M. & Tsinganos, K. 1993 Exact solutions for helical magnetohydrodynamic equilibria. Phys. Fluids B: Plasma Phys. 5 (7), 21532164.CrossRefGoogle Scholar
Vladimirov, V.A. & Moffatt, H.K. 1995 On general transformations and variational principles for the magnetohydrodynamics of ideal fluids. Part 1. Fundamental principles. J. Fluid Mech. 283, 125139.CrossRefGoogle Scholar
Weitzner, H. 2014 Ideal magnetohydrodynamic equilibrium in a non-symmetric topological torus. Phys. Plasmas 21 (2), 022515.CrossRefGoogle Scholar
Weitzner, H. 2016 Expansions of non-symmetric toroidal magnetohydrodynamic equilibria. Phys. Plasmas 23 (6), 062512.CrossRefGoogle Scholar
White, C.J., Stone, J.M. & Quataert, E. 2019 A resolution study of magnetically arrested disks. Astrophys. J. 874 (2), 168.CrossRefGoogle Scholar