Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T23:19:53.772Z Has data issue: false hasContentIssue false

Steady nonlinear electrostatic plasma wave in a weak transverse magnetic field

Published online by Cambridge University Press:  01 April 2007

V.L. KRASOVSKY*
Affiliation:
Space Research Institute, Russian Academy of Sciences, Profsoyuznaya Street 84/32, Moscow 117997, Russia ([email protected])

Abstract.

The structure of a stationary electrostatic plasma wave propagating at a right angle to a weak magnetic field is studied. It is shown that the periodic finite amplitude wave is close in its physical structure to Bernstein–Greene–Kruskal wave of a perfectly definite type. The distinguishing feature of such a nonlinear wave is the absence of the resonant particles trapped by the wave. The electron distribution function, density perturbation and the shape of the wave electrostatic potential are found. The nonlinear dispersion relation is derived to determine the frequency shift due to the perturbation of the distribution function in the resonant region.

Type
Papers
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernstein, I. B., Greene, J. M. and Kruskal, M. D. 1957 Phys. Rev. 108, 546.CrossRefGoogle Scholar
Chernikov, A. A., Sagdeev, R. Z., Usikov, D. A., Zakharov, M. Yu. and Zaslavsky, G. M. 1987 Nature 326, 6113.CrossRefGoogle Scholar
Dawson, J. M. et al. . 1983 Phys. Rev. Lett. 50, 1455.CrossRefGoogle Scholar
Domier, C. W., Nishida, Y. and Luhmann, N. C. Jr. 1989 Phys. Rev. Lett. 63, 1803.CrossRefGoogle Scholar
Eliasson, B., Dieckmann, M. E. and Shukla, P. K. 2005 New J. Phys. 7, 136.CrossRefGoogle Scholar
Karney, C. F. F. 1979 Phys. Fluids 22, 2188.Google Scholar
Krasovsky, V. L. 1992 J. Plasma Phys. 47, part 2, 235.CrossRefGoogle Scholar
Krasovsky, V. L. 1995 Sov. Phys. JETP 80, 420.Google Scholar
Krasovsky, V. L., Matsumoto, H. and Omura, Y. 2003 J. Geophys. Res. 108, A3, 1117.Google Scholar
O'Neil, T. M. 1965 Phys. Fluids 8, 2255.CrossRefGoogle Scholar
Sagdeev, R. Z. and Shapiro, V. D. 1973 JETP Lett. 17, 279.Google Scholar
Sugihara, R. and Midzuno, Y. 1979 J. Phys. Soc. Japan 47, 1290.Google Scholar
Valentini, F., Veltri, P. and Mangeney, A. 2005 Phys. Rev. E 71, 016402.CrossRefGoogle Scholar
Zakharov, V. E. and Karpman, V. I. 1962 Zh. Exp. Teor. Fiz. 43, 490.Google Scholar
Zaslavsky, G. M., Mal'kov, M. A., Sagdeev, R. Z. and Shapiro, V. D. 1986 Fizika Plazmy 12, 788.Google Scholar